Example #1
0
    def forward(self, anchors, objectness, box_regression, targets=None):
        """
        Arguments:
            anchors: list[list[BoxList]]
            objectness: list[tensor]
            box_regression: list[tensor]

        Returns:
            boxlists (list[BoxList]): the post-processed anchors, after
                applying box decoding and NMS
        """
        sampled_boxes = []
        num_levels = len(objectness)
        anchors = list(zip(*anchors))
        for a, o, b in zip(anchors, objectness, box_regression):
            sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]

        if num_levels > 1:
            boxlists = self.select_over_all_levels(boxlists)

        # append ground-truth bboxes to proposals
        if self.training and targets is not None:
            boxlists = self.add_gt_proposals(boxlists, targets)

        return boxlists
    def __call__(self, anchors, objectness, box_regression, targets):
        """
        Arguments:
            anchors (list[BoxList])
            objectness (list[Tensor])
            box_regression (list[Tensor])
            targets (list[BoxList])

        Returns:
            objectness_loss (Tensor)
            box_loss (Tensor
        """
        anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
        labels, regression_targets = self.prepare_targets(anchors, targets)
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
        sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1)

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness_flattened = []
        box_regression_flattened = []
        # for each feature level, permute the outputs to make them be in the
        # same format as the labels. Note that the labels are computed for
        # all feature levels concatenated, so we keep the same representation
        # for the objectness and the box_regression
        for objectness_per_level, box_regression_per_level in zip(
            objectness, box_regression
        ):
            N, A, H, W = objectness_per_level.shape
            objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape(
                N, -1
            )
            box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W)
            box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2)
            box_regression_per_level = box_regression_per_level.reshape(N, -1, 4)
            objectness_flattened.append(objectness_per_level)
            box_regression_flattened.append(box_regression_per_level)
        # concatenate on the first dimension (representing the feature levels), to
        # take into account the way the labels were generated (with all feature maps
        # being concatenated as well)
        objectness = cat(objectness_flattened, dim=1).reshape(-1)
        box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4)

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

        box_loss = smooth_l1_loss(
            box_regression[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
            beta=1.0 / 9,
            size_average=False,
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds]
        )

        return objectness_loss, box_loss
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > self.score_thresh
        for j in range(1, num_classes):
            inds = inds_all[:, j].nonzero().squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4:(j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class = boxlist_nms(boxlist_for_class,
                                            self.nms,
                                            score_field="scores")
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels",
                torch.full((num_labels, ), j, dtype=torch.int64,
                           device=device))
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(),
                number_of_detections - self.detections_per_img + 1)
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        return result
Example #4
0
    def __call__(self, anchors, objectness, box_regression, targets):
        """
        Arguments:
            anchors (list[BoxList])
            objectness (list[Tensor])
            box_regression (list[Tensor])
            targets (list[BoxList])

        Returns:
            objectness_loss (Tensor)
            box_loss (Tensor
        """
        anchors = [
            cat_boxlist(anchors_per_image) for anchors_per_image in anchors
        ]
        labels, regression_targets = self.prepare_targets(anchors, targets)
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds,
                                                   dim=0)).squeeze(1)
        sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds,
                                                   dim=0)).squeeze(1)

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness, box_regression = \
                concat_box_prediction_layers(objectness, box_regression)

        objectness = objectness.squeeze()

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

        box_loss = smooth_l1_loss(
            box_regression[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
            beta=1.0 / 9,
            size_average=False,
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds])

        return objectness_loss, box_loss
Example #5
0
    def add_gt_proposals(self, proposals, targets):
        """
        Arguments:
            proposals: list[BoxList]
            targets: list[BoxList]
        """
        # Get the device we're operating on
        device = proposals[0].bbox.device

        gt_boxes = [target.copy_with_fields([]) for target in targets]

        # later cat of bbox requires all fields to be present for all bbox
        # so we need to add a dummy for objectness that's missing
        for gt_box in gt_boxes:
            gt_box.add_field("objectness",
                             torch.ones(len(gt_box), device=device))

        proposals = [
            cat_boxlist((proposal, gt_box))
            for proposal, gt_box in zip(proposals, gt_boxes)
        ]

        return proposals