def test_convolve1(): """ convolve(data, kernel, mode=FULL) Returns the discrete, linear convolution of 1-D sequences a and v; mode can be 0 (VALID), 1 (SAME), or 2 (FULL) to specify size of the resulting sequence. """ result = convolve.convolve(np.arange(8), [1, 2], mode=VALID) test = np.array([ 1, 4, 7, 10, 13, 16, 19]) assert_equal(result.all(),test.all())
def test_convolve6(): result = convolve.convolve(np.arange(8), [1, 2, 3], mode=FULL) test = np.array([ 0, 1, 4, 10, 16, 22, 28, 34, 32, 21]) assert_equal(result.all(),test.all())
def test_convolve5(): result = convolve.convolve(np.arange(8), [1, 2, 3], mode=SAME) test = np.array([ 1, 4, 10, 16, 22, 28, 34, 32]) assert_equal(result.all(),test.all())
def test_convolve4(): result = convolve.convolve(np.arange(8), [1, 2, 3], mode=VALID) test = np.array([ 4, 10, 16, 22, 28, 34]) assert_equal(result.all(),test.all())
def test_convolve3(): result = convolve.convolve(np.arange(8), [1, 2], mode=FULL) test = np.array([ 0, 1, 4, 7, 10, 13, 16, 19, 14]) assert_equal(result.all(),test.all())
def test_convolve10(): result = convolve.convolve([1.,2.], np.arange(10.)) test = np.array([ 0., 1., 4., 7., 10., 13., 16., 19., 22., 25., 18.]) assert_equal(result.all(),test.all())
def test_convolve9(): result = convolve.convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) test = np.array([ 0, 1, 4, 10, 20, 35, 56, 77, 90, 94, 88, 71, 42]) assert_equal(result.all(),test.all())
def test_convolve8(): result = convolve.convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) test = np.array([ 4, 10, 20, 35, 56, 77, 90, 94]) assert_equal(result.all(),test.all())
def test_convolve7(): result = convolve.convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) test = np.array([35, 56, 77]) assert_equal(result.all(),test.all())