def __init__(self, save_dir, model_name, step=10, window=20, max_freq=8000, desc_file=None): """ Params: step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned desc_file (str, optional): Path to a JSON-line file that contains labels and paths to the audio files. If this is None, then load metadata right away """ #calc_feat_dim returns int(0.001*window*max_freq)+1 super(DataGenerator, self).__init__() # feat_dim=0.001*20*8000+1=161 self.feat_dim = calc_feat_dim(window, max_freq) # 1d 161 length of array filled with zeros self.feats_mean = np.zeros((self.feat_dim,)) # 1d 161 length of array filled with 1s self.feats_std = np.ones((self.feat_dim,)) self.max_input_length = 0 self.max_length_list_in_batch =[] # 1d 161 length of array filled with random value #[0.0, 1.0) self.rng = random.Random() if desc_file is not None: self.load_metadata_from_desc_file(desc_file) self.step = step self.window = window self.max_freq = max_freq self.save_dir = save_dir self.model_name = model_name
def __init__(self, save_dir, model_name, step=10, window=20, max_freq=8000, desc_file=None): """ Params: step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned desc_file (str, optional): Path to a JSON-line file that contains labels and paths to the audio files. If this is None, then load metadata right away """ #calc_feat_dim returns int(0.001*window*max_freq)+1 super(DataGenerator, self).__init__() # feat_dim=0.001*20*8000+1=161 self.feat_dim = calc_feat_dim(window, max_freq) # 1d 161 length of array filled with zeros self.feats_mean = np.zeros((self.feat_dim,)) # 1d 161 length of array filled with 1s self.feats_std = np.ones((self.feat_dim,)) self.max_input_length = 0 self.max_length_list_in_batch = [] # 1d 161 length of array filled with random value #[0.0, 1.0) self.rng = random.Random() if desc_file is not None: self.load_metadata_from_desc_file(desc_file) self.step = step self.window = window self.max_freq = max_freq self.save_dir = save_dir self.model_name = model_name