Example #1
0
        if 'validate_object_labels' in exec_list:
            print("validating object labels")
            valid_label_flags = tools.validate_object_labels(
                frame.laser_labels, lidar_pcl, configs_det,
                0 if configs_det.use_labels_as_objects == True else 10)
        else:
            print('loading object labels and validation from result file')
            valid_label_flags = load_object_from_file(results_fullpath,
                                                      data_filename,
                                                      'valid_labels',
                                                      cnt_frame)

        ## Performance evaluation for object detection
        if 'measure_detection_performance' in exec_list:
            print('measuring detection performance')
            det_performance = eval.measure_detection_performance(
                detections, frame.laser_labels, valid_label_flags)
        else:
            print('loading detection performance measures from file')
            det_performance = load_object_from_file(
                results_fullpath, data_filename, 'det_performance_' +
                configs_det.arch + '_' + str(configs_det.conf_thresh),
                cnt_frame)

        det_performance_all.append(
            det_performance
        )  # store all evaluation results in a list for performance assessment at the end

        ## Visualization for object detection
        if 'show_range_image' in exec_list:
            img_range = pcl.show_range_image(frame)  #lider_name S3
            img_range = img_range.astype(np.uint8)
Example #2
0
            print("validating object labels")
            valid_label_flags = tools.validate_object_labels(
                frame.laser_labels, lidar_pcl, configs_det,
                0 if configs_det.use_labels_as_objects == True else 10)
        else:
            print('loading object labels and validation from result file')
            valid_label_flags = load_object_from_file(results_fullpath,
                                                      data_filename,
                                                      'valid_labels',
                                                      cnt_frame)

        ## Performance evaluation for object detection
        if 'measure_detection_performance' in exec_list:
            print('measuring detection performance')
            det_performance = eval.measure_detection_performance(
                detections, frame.laser_labels, valid_label_flags,
                configs_det.min_iou)
        else:
            print('loading detection performance measures from file')
            # det_performance = load_object_from_file(results_fullpath, data_filename, 'det_performance_' + configs_det.arch + '_' + str(configs_det.conf_thresh), cnt_frame)
            det_performance = load_object_from_file(results_fullpath,
                                                    data_filename,
                                                    'det_performance',
                                                    cnt_frame)
        det_performance_all.append(
            det_performance
        )  # store all evaluation results in a list for performance assessment at the end

        ## Visualization for object detection
        if 'show_range_image' in exec_list:
            img_range = pcl.show_range_image(frame, lidar_name)