Example #1
0
def test_gpu_stump_identical_subsequence_A_B_join():
    identical = np.random.rand(8)
    T_A = np.random.rand(20)
    T_B = np.random.rand(20)
    T_A[1:1 + identical.shape[0]] = identical
    T_B[11:11 + identical.shape[0]] = identical
    m = 3
    ref_mp = naive.stamp(T_B, m, T_B=T_A)
    comp_mp = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(
        ref_mp[:, 0], comp_mp[:, 0],
        decimal=config.STUMPY_TEST_PRECISION)  # ignore indices

    # comp_mp = gpu_stump(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False)
    # naive.replace_inf(comp_mp)
    # npt.assert_almost_equal(
    #     ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION
    # )  # ignore indices

    # Swap inputs
    ref_mp = naive.stamp(T_A, m, T_B=T_B)
    comp_mp = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(
        ref_mp[:, 0], comp_mp[:, 0],
        decimal=config.STUMPY_TEST_PRECISION)  # ignore indices
Example #2
0
def test_two_constant_subsequences_A_B_join():
    T_A = np.array([0, 0, 0, 0, 0, 1], dtype=np.float64)
    T_B = np.concatenate(
        (np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    left = np.array(
        [utils.naive_mass(Q, T_A, m) for Q in core.rolling_window(T_B, m)],
        dtype=object)
    right = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    utils.replace_inf(left)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    # Swap inputs
    left = np.array(
        [utils.naive_mass(Q, T_B, m) for Q in core.rolling_window(T_A, m)],
        dtype=object)
    right = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    utils.replace_inf(left)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices
Example #3
0
def test_gpu_stump_self_join_larger_window(T_A, T_B):
    for m in [8, 16, 32]:
        if len(T_B) > m:
            zone = int(np.ceil(m / 4))
            left = np.array(
                [
                    utils.naive_mass(Q, T_B, m, i, zone, True)
                    for i, Q in enumerate(core.rolling_window(T_B, m))
                ],
                dtype=object,
            )
            right = gpu_stump(T_B,
                              m,
                              ignore_trivial=True,
                              threads_per_block=THREADS_PER_BLOCK)
            utils.replace_inf(left)
            utils.replace_inf(right)

            npt.assert_almost_equal(left, right)

            right = gpu_stump(
                pd.Series(T_B),
                m,
                ignore_trivial=True,
                threads_per_block=THREADS_PER_BLOCK,
            )
            utils.replace_inf(right)
            npt.assert_almost_equal(left, right)
Example #4
0
def test_parallel_gpu_stump_self_join(T_A, T_B):
    device_ids = [device.id for device in cuda.list_devices()]
    if len(T_B) > 10:
        m = 3
        zone = int(np.ceil(m / 4))
        left = np.array(
            [
                utils.naive_mass(Q, T_B, m, i, zone, True)
                for i, Q in enumerate(core.rolling_window(T_B, m))
            ],
            dtype=object,
        )
        right = gpu_stump(
            T_B,
            m,
            ignore_trivial=True,
            threads_per_block=THREADS_PER_BLOCK,
            device_id=device_ids,
        )
        utils.replace_inf(left)
        utils.replace_inf(right)
        npt.assert_almost_equal(left, right)

        right = gpu_stump(
            pd.Series(T_B),
            m,
            ignore_trivial=True,
            threads_per_block=THREADS_PER_BLOCK,
            device_id=device_ids,
        )
        utils.replace_inf(right)
        npt.assert_almost_equal(left, right)
Example #5
0
def test_parallel_gpu_stump_A_B_join(T_A, T_B):
    device_ids = [device.id for device in cuda.list_devices()]
    if len(T_B) > 10:
        m = 3
        left = np.array(
            [utils.naive_mass(Q, T_A, m) for Q in core.rolling_window(T_B, m)],
            dtype=object,
        )
        right = gpu_stump(
            T_A,
            m,
            T_B,
            ignore_trivial=False,
            threads_per_block=THREADS_PER_BLOCK,
            device_id=device_ids,
        )
        utils.replace_inf(left)
        utils.replace_inf(right)
        npt.assert_almost_equal(left, right)

        right = gpu_stump(
            pd.Series(T_A),
            m,
            pd.Series(T_B),
            ignore_trivial=False,
            threads_per_block=THREADS_PER_BLOCK,
            device_id=device_ids,
        )
        utils.replace_inf(right)
        npt.assert_almost_equal(left, right)
Example #6
0
def test_gpu_stump_nan_inf_A_B_join(
    T_A, T_B, substitute_A, substitute_B, substitution_locations
):
    m = 3
    stop = 16
    T_A_sub = T_A.copy()
    T_B_sub = T_B.copy()[:stop]

    for substitution_location_B in substitution_locations:
        for substitution_location_A in substitution_locations:
            T_A_sub[:] = T_A
            T_B_sub[:] = T_B[:stop]
            T_A_sub[substitution_location_A] = substitute_A
            T_B_sub[substitution_location_B] = substitute_B

            left = naive.stamp(T_A_sub, m, T_B=T_B_sub)
            right = gpu_stump(T_A_sub, m, T_B_sub, ignore_trivial=False)
            naive.replace_inf(left)
            naive.replace_inf(right)
            npt.assert_almost_equal(left, right)

            right = gpu_stump(
                pd.Series(T_A_sub), m, pd.Series(T_B_sub), ignore_trivial=False
            )
            naive.replace_inf(right)
            npt.assert_almost_equal(left, right)
Example #7
0
def test_gpu_stump_two_constant_subsequences_A_B_join():
    T_A = np.array([0, 0, 0, 0, 0, 1], dtype=np.float64)
    T_B = np.concatenate(
        (np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    left = naive.stamp(T_A, m, T_B=T_B)
    right = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    # Swap inputs
    left = naive.stamp(T_B, m, T_B=T_A)
    right = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices
Example #8
0
def test_parallel_gpu_stump_A_B_join(T_A, T_B):
    device_ids = [device.id for device in cuda.list_devices()]
    if len(T_B) > 10:
        m = 3
        left = naive.stamp(T_A, m, T_B=T_B)
        right = gpu_stump(
            T_A,
            m,
            T_B,
            ignore_trivial=False,
            device_id=device_ids,
        )
        naive.replace_inf(left)
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)

        right = gpu_stump(
            pd.Series(T_A),
            m,
            pd.Series(T_B),
            ignore_trivial=False,
            device_id=device_ids,
        )
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)
Example #9
0
def test_gpu_stump_identical_subsequence_A_B_join():
    identical = np.random.rand(8)
    T_A = np.random.rand(20)
    T_B = np.random.rand(20)
    T_A[1 : 1 + identical.shape[0]] = identical
    T_B[11 : 11 + identical.shape[0]] = identical
    m = 3
    left = naive.stamp(T_A, m, T_B=T_B)
    right = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(
        left[:, 0], right[:, 0], decimal=config.STUMPY_TEST_PRECISION
    )  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    naive.replace_inf(right)
    npt.assert_almost_equal(
        left[:, 0], right[:, 0], decimal=config.STUMPY_TEST_PRECISION
    )  # ignore indices

    # Swap inputs
    left = naive.stamp(T_B, m, T_B=T_A)
    right = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(
        left[:, 0], right[:, 0], decimal=config.STUMPY_TEST_PRECISION
    )  # ignore indices

    right = gpu_stump(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False)
    naive.replace_inf(right)
    npt.assert_almost_equal(
        left[:, 0], right[:, 0], decimal=config.STUMPY_TEST_PRECISION
    )  # ignore indices
Example #10
0
def test_gpu_stump_A_B_join(T_A, T_B):
    m = 3
    left = naive.stamp(T_A, m, T_B=T_B)
    right = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left, right)

    right = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    naive.replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #11
0
def test_gpu_stump_self_join(T_A, T_B):
    m = 3
    zone = int(np.ceil(m / 4))
    ref_mp = naive.stamp(T_B, m, exclusion_zone=zone)
    comp_mp = gpu_stump(T_B, m, ignore_trivial=True)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp, comp_mp)

    comp_mp = gpu_stump(pd.Series(T_B), m, ignore_trivial=True)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp, comp_mp)
Example #12
0
def test_gpu_stump_self_join(T_A, T_B):
    m = 3
    zone = int(np.ceil(m / 4))
    left = naive.stamp(T_B, m, exclusion_zone=zone)
    right = gpu_stump(T_B, m, ignore_trivial=True)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left, right)

    right = gpu_stump(pd.Series(T_B), m, ignore_trivial=True)
    naive.replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #13
0
def test_stump_A_B_join(T_A, T_B):
    m = 3
    left = np.array(
        [naive_mass(Q, T_A, m) for Q in core.rolling_window(T_B, m)],
        dtype=object)
    right = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    replace_inf(left)
    replace_inf(right)
    npt.assert_almost_equal(left, right)

    right = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #14
0
def test_gpu_stump_constant_subsequence_self_join():
    T_A = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    zone = int(np.ceil(m / 4))
    left = naive.stamp(T_A, m, exclusion_zone=zone)
    right = gpu_stump(T_A, m, ignore_trivial=True)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, ignore_trivial=True)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices
Example #15
0
def test_gpu_stump_self_join_larger_window(T_A, T_B):
    for m in [8, 16, 32]:
        if len(T_B) > m:
            zone = int(np.ceil(m / 4))
            left = naive.stamp(T_B, m, exclusion_zone=zone)
            right = gpu_stump(T_B, m, ignore_trivial=True)
            naive.replace_inf(left)
            naive.replace_inf(right)

            npt.assert_almost_equal(left, right)

            right = gpu_stump(pd.Series(T_B), m, ignore_trivial=True,)
            naive.replace_inf(right)
            npt.assert_almost_equal(left, right)
Example #16
0
def test_parallel_gpu_stump_self_join(T_A, T_B):
    device_ids = [device.id for device in cuda.list_devices()]
    if len(T_B) > 10:
        m = 3
        zone = int(np.ceil(m / 4))
        left = naive.stamp(T_B, m, exclusion_zone=zone)
        right = gpu_stump(T_B, m, ignore_trivial=True, device_id=device_ids,)
        naive.replace_inf(left)
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)

        right = gpu_stump(pd.Series(T_B), m, ignore_trivial=True, device_id=device_ids,)
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)
Example #17
0
def calculate_matrix_profile(column, seq_length):
    import stumpy

    try:
        # stumpy needs np float
        old_data = np.array(column, dtype=np.floating)
    except ValueError:
        raise Exception('Can\'t convert column to float')

    try:
        if cuda.is_available():
            gpu_device_ids = [device.id for device in cuda.list_devices()]
            mp = stumpy.gpu_stump(old_data,
                                  m=seq_length,
                                  ignore_trivial=False,
                                  device_id=gpu_device_ids)
        else:
            mp = stumpy.stump(old_data, m=seq_length, ignore_trivial=False)

    except TypeError as e:
        print('Type issue in stumpy:')
        raise e
    except ValueError as e:
        print('Seq_length issue in stumpy')
        raise e

    if pd.isnull(mp).any():
        raise Exception(
            'Matrix profile for the column contains NaN values. Try to increase the dataset size'
        )

    return mp
Example #18
0
def test_gpu_stump_A_B_join(T_A, T_B):
    m = 3
    ref_mp = naive.stamp(T_B, m, T_B=T_A)
    comp_mp = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp, comp_mp)
Example #19
0
def test_gpu_stump_identical_subsequence_self_join():
    identical = np.random.rand(8)
    T_A = np.random.rand(20)
    T_A[1:1 + identical.shape[0]] = identical
    T_A[11:11 + identical.shape[0]] = identical
    m = 3
    zone = int(np.ceil(m / 4))
    left = naive.stamp(T_A, m, exclusion_zone=zone)
    right = gpu_stump(T_A, m, ignore_trivial=True)
    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0],
                            decimal=naive.PRECISION)  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, ignore_trivial=True)
    naive.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0],
                            decimal=naive.PRECISION)  # ignore indices
Example #20
0
def test_stump_self_join(T_A, T_B):
    m = 3
    zone = int(np.ceil(m / 4))
    left = np.array(
        [
            naive_mass(Q, T_B, m, i, zone, True)
            for i, Q in enumerate(core.rolling_window(T_B, m))
        ],
        dtype=object,
    )
    right = gpu_stump(T_B, m, ignore_trivial=True)
    replace_inf(left)
    replace_inf(right)
    npt.assert_almost_equal(left, right)

    right = gpu_stump(pd.Series(T_B), m, ignore_trivial=True)
    replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #21
0
def test_gpu_stump_self_join_larger_window(T_A, T_B, m):
    if len(T_B) > m:
        zone = int(np.ceil(m / 4))
        ref_mp = naive.stamp(T_B, m, exclusion_zone=zone)
        comp_mp = gpu_stump(T_B, m, ignore_trivial=True)
        naive.replace_inf(ref_mp)
        naive.replace_inf(comp_mp)

        npt.assert_almost_equal(ref_mp, comp_mp)
Example #22
0
def test_gpu_stump_constant_subsequence_self_join():
    T_A = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    zone = int(np.ceil(m / 4))
    ref_mp = naive.stamp(T_A, m, exclusion_zone=zone)
    comp_mp = gpu_stump(T_A, m, ignore_trivial=True)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0])  # ignore indices
Example #23
0
    def _transform(self, X, y=None):
        n_ts, sz, d = X.shape

        if d > 1:
            raise NotImplementedError("We currently don't support using "
                                      "multi-dimensional matrix profiles "
                                      "from the stumpy library.")

        output_size = sz - self.subsequence_length + 1
        X_transformed = np.empty((n_ts, output_size, 1))

        if self.implementation == "stump":
            if not STUMPY_INSTALLED:
                raise ImportError(stumpy_msg)

            for i_ts in range(n_ts):
                result = stumpy.stump(T_A=X[i_ts, :, 0].ravel(),
                                      m=self.subsequence_length)
                X_transformed[i_ts, :, 0] = result[:, 0].astype(np.float)

        elif self.implementation == "gpu_stump":
            if not STUMPY_INSTALLED:
                raise ImportError(stumpy_msg)

            for i_ts in range(n_ts):
                result = stumpy.gpu_stump(T_A=X[i_ts, :, 0].ravel(),
                                          m=self.subsequence_length)
                X_transformed[i_ts, :, 0] = result[:, 0].astype(np.float)

        elif self.implementation == "numpy":
            scaler = TimeSeriesScalerMeanVariance()
            band_width = int(np.ceil(self.subsequence_length / 4))
            for i_ts in range(n_ts):
                segments = _series_to_segments(X[i_ts],
                                               self.subsequence_length)
                if self.scale:
                    segments = scaler.fit_transform(segments)
                n_segments = segments.shape[0]
                segments_2d = segments.reshape(
                    (-1, self.subsequence_length * d))
                dists = squareform(pdist(segments_2d, "euclidean"))
                band = (np.tri(
                    n_segments, n_segments, band_width, dtype=np.bool
                ) & ~np.tri(
                    n_segments, n_segments, -(band_width + 1), dtype=np.bool))
                dists[band] = np.inf
                X_transformed[i_ts] = dists.min(axis=1, keepdims=True)

        else:
            available_implementations = ["numpy", "stump", "gpu_stump"]
            raise ValueError(
                'This "{}" matrix profile implementation is not'
                ' recognized. Available implementations are {}.'.format(
                    self.implementation, available_implementations))

        return X_transformed
Example #24
0
def test_gpu_stump_nan_inf_self_join(T_A, T_B, substitute_B, substitution_locations):
    m = 3
    stop = 16
    T_B_sub = T_B.copy()[:stop]

    for substitution_location_B in substitution_locations:
        T_B_sub[:] = T_B[:stop]
        T_B_sub[substitution_location_B] = substitute_B

        zone = int(np.ceil(m / 4))
        left = naive.stamp(T_B_sub, m, exclusion_zone=zone)
        right = gpu_stump(T_B_sub, m, ignore_trivial=True)
        naive.replace_inf(left)
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)

        right = gpu_stump(pd.Series(T_B_sub), m, ignore_trivial=True)
        naive.replace_inf(right)
        npt.assert_almost_equal(left, right)
def test_gpu_stump(T, m):
    if not cuda.is_available():  # pragma: no cover
        pytest.skip("Skipping Tests No GPUs Available")

    if T.ndim > 1:
        T = T.copy()
        T = T[0]

    ref = stumpy.gpu_aamp(T, m)
    comp = stumpy.gpu_stump(T, m, normalize=False)
    npt.assert_almost_equal(ref, comp)
Example #26
0
def test_constant_subsequence_self_join():
    T_A = np.concatenate(
        (np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    zone = int(np.ceil(m / 4))
    left = np.array(
        [
            utils.naive_mass(Q, T_A, m, i, zone, True)
            for i, Q in enumerate(core.rolling_window(T_A, m))
        ],
        dtype=object,
    )
    right = gpu_stump(T_A, m, ignore_trivial=True)
    utils.replace_inf(left)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices

    right = gpu_stump(pd.Series(T_A), m, ignore_trivial=True)
    utils.replace_inf(right)
    npt.assert_almost_equal(left[:, 0], right[:, 0])  # ignore indices
Example #27
0
def test_gpu_stump_one_constant_subsequence_A_B_join():
    T_A = np.random.rand(20)
    T_B = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64)))
    m = 3
    ref_mp = naive.stamp(T_B, m, T_B=T_A)
    comp_mp = gpu_stump(T_B, m, T_A, ignore_trivial=False)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0])  # ignore indices

    # comp_mp = gpu_stump(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False)
    # naive.replace_inf(comp_mp)
    # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0])  # ignore indices

    # Swap inputs
    ref_mp = naive.stamp(T_A, m, T_B=T_B)
    comp_mp = gpu_stump(T_A, m, T_B, ignore_trivial=False)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0])  # ignore indices
Example #28
0
def test_gpu_stump_nan_zero_mean_self_join():
    T = np.array([-1, 0, 1, np.inf, 1, 0, -1])
    m = 3

    zone = int(np.ceil(m / 4))
    left = naive.stamp(T, m, exclusion_zone=zone)
    right = gpu_stump(T, m, ignore_trivial=True)

    naive.replace_inf(left)
    naive.replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #29
0
def test_gpu_stump_A_B_join(T_A, T_B):
    m = 3
    left = np.array(
        [utils.naive_mass(Q, T_A, m) for Q in core.rolling_window(T_B, m)],
        dtype=object)
    right = gpu_stump(T_A,
                      m,
                      T_B,
                      ignore_trivial=False,
                      threads_per_block=THREADS_PER_BLOCK)
    utils.replace_inf(left)
    utils.replace_inf(right)
    npt.assert_almost_equal(left, right)

    right = gpu_stump(
        pd.Series(T_A),
        m,
        pd.Series(T_B),
        ignore_trivial=False,
        threads_per_block=THREADS_PER_BLOCK,
    )
    utils.replace_inf(right)
    npt.assert_almost_equal(left, right)
Example #30
0
def test_gpu_stump_identical_subsequence_self_join():
    identical = np.random.rand(8)
    T_A = np.random.rand(20)
    T_A[1:1 + identical.shape[0]] = identical
    T_A[11:11 + identical.shape[0]] = identical
    m = 3
    zone = int(np.ceil(m / 4))
    ref_mp = naive.stamp(T_A, m, exclusion_zone=zone)
    comp_mp = gpu_stump(T_A, m, ignore_trivial=True)
    naive.replace_inf(ref_mp)
    naive.replace_inf(comp_mp)
    npt.assert_almost_equal(
        ref_mp[:, 0], comp_mp[:, 0],
        decimal=config.STUMPY_TEST_PRECISION)  # ignore indices