@dc.param( String( key="odType", default="IncToDec", help="The type of the overfitting detector to use.IncToDec,Iter", ) ) @dc.param(Int(key="randomSeed", default=0, help="The random seed used for training.")) @dc.param( Int( key="metricPeriod", default=1, help="The frequency of iterations to calculate the values of objectives and metrics. ", ) ) @dc.param(Bool(key="useBestModel", default=True, help="Use Best Model.")) @dc.param( Float( key="baggingTemperature", default=1, help="Defines the settings of the Bayesian bootstrap. ", ) ) @dc.param( String( key="evalMetric", default="MAE", help="""The metric used for overfitting detection and best model selection. MAE,MAPE,RMSE,Poisson,SMAPE,R2,MSLE,MedianAbsoluteError""", ) )
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, Csv, String, Bool import statsmodels.api as sm import pandas as pd from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(Bool(key="timestampIndex", default=False)) @dc.column(String(key="timestampColumn", default="date")) @dc.column(String(key="labelColumn", default="y")) @dc.param( String( key="missing", default="none", help="Available options are ‘none’, ‘drop’, and ‘raise’.", )) @dc.param( String( key="trend", default="c", help= "Whether to include a constant or not. ‘c’ includes constant, ‘nc’ no constant.", )) @dc.param(String(key="method", default="cmle", help="‘cmle’, ‘mle’")) @dc.param( Int(key="maxiter", default=35,
help="Subsample ratio of columns when constructing each tree.", )) @dc.param( Float(key="regAlpha", default=0.0, help="L1 regularization term on weights.")) @dc.param( Float(key="regLambda", default=0.0, help="L2 regularization term on weights.")) @dc.param(Int(key="randomState", default=0, help="Random number seed.")) @dc.param(Int(key="nJobs", default=-1, help="Number of parallel threads.")) @dc.param( Bool( key="silent", default=True, help="Whether to print messages while running boosting.", )) @dc.param(Bool(key="needTrain", default=True)) @dc.output(SklearnModel(key="outputModel")) def SPLightGBMClassifier(context): # 从 Context 中获取相关数据 args = context.args # 查看上一节点发送的 args.inputData 数据 df = args.inputData featureColumns = args.featureColumns labelColumn = args.labelColumn features = df[featureColumns].values
from statsmodels.tsa.arima_model import ARMAResultsWrapper, ARIMAResultsWrapper from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.discrete.discrete_model import ( BinaryResultsWrapper, MultinomialResultsWrapper, ) from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.input(SklearnModel(key="inputModel")) @dc.column(ListOfString(key="featureColumns", default=["a", "b", "c", "d"])) @dc.column(String(key="predictColumn", default="prediction")) @dc.param(String(key="start", default="2000-11-30")) @dc.param(String(key="end", default="2001-05-31")) @dc.param(Bool(key="dynamic", default=True)) @dc.output(Csv(key="outputData")) def SPStatsPredict(context): args = context.args model = args.inputModel if isinstance( model, ( ARResultsWrapper, ARMAResultsWrapper, ARIMAResultsWrapper, SARIMAXResultsWrapper, ), ): print("Time series model loaded")
default=[0.75, -0.25], help= "coefficient for autoregressive lag polynomial, including zero lag", )) @dc.param( ListOfFloat( key="ma", default=[0.65, 0.35], help= "coefficient for moving-average lag polynomial, including zero lag", )) @dc.param( Int(key="nsample", default=250, help="length of simulated time series")) @dc.param(Float(key="sigma", default=1.0, help="standard deviation of noise")) @dc.param(Int(key="randomSeed", default=12345, help="random seed")) @dc.param(Bool(key="dateCol", default=True, help="date in dataset")) @dc.param( String( key="startDate", default="19800131", help="The first abbreviated date, for instance, '1965q1' or '1965m1'", )) @dc.param(String(key="freq", default="M", help="DateOffset")) @dc.output(Csv(key="outputData")) def SPARMASample(context): # 从 Context 中获取相关数据 args = context.args # 查看上一节点发送的 args.inputData 数据 np.random.seed(args.randomSeed) arparams = np.array(args.ar) maparams = np.array(args.ma)
# coding=utf-8 from __future__ import absolute_import, print_function from suanpan.docker import DockerComponent as dc from suanpan.docker.arguments import Int, Csv, ListOfInt, String, Bool import statsmodels.api as sm import pandas as pd from arguments import SklearnModel @dc.input(Csv(key="inputData")) @dc.column(Bool(key="timestampIndex", default=False)) @dc.column(String(key="timestampColumn", default="date")) @dc.column(String(key="labelColumn", default="y")) @dc.param( ListOfInt( key="order", default=[1, 0, 0], help="The (p,d,q) order of the model for the number of AR parameters, " "differences, and MA parameters.", ) ) @dc.param( ListOfInt( key="seasonalOrder", default=[0, 0, 0, 0], help="The (P,D,Q,s) order of the seasonal component of the model for the" " AR parameters, differences, MA parameters, and periodicity.", ) ) @dc.param(