def test_load_model(self): client = ModelsClient() name = "simple-nn-model" version = "1" model = client.load_model(name, version) x = np.float32([[1.0], [2.0]]) y = model.predict(x) assert y.shape[0] == 2 assert y.shape[1] == 1
def test_load_model(self, mocker): mock_method = mocker.patch.object(mlflow.pyfunc, "load_model") mock_method.return_value = mlflow.pytorch._PyTorchWrapper( LinearNNModel()) client = ModelsClient() name = "simple-nn-model" version = "1" model = client.load_model(name, version) mock_method.assert_called_once_with( model_uri="models:/simple-nn-model/1") x = np.float32([[1.0], [2.0]]) y = model.predict(x) assert y.shape[0] == 2 assert y.shape[1] == 1