NEPOCH = 50 APOSTLE = 'v4_nopt' system('cp %s shallow_models/train_%s.py' % (argv[0], APOSTLE)) ''' instantiate data loaders ''' top = make_coll(basedir + '/PARTITION/Top_*_CATEGORY.npy') qcd = make_coll(basedir + '/PARTITION/QCD_*_CATEGORY.npy') data = [top, qcd] ''' first build the classifier! ''' # set up data classifier_train_gen = generate(data, partition='train', batch=1000) classifier_validation_gen = generate(data, partition='validate', batch=10000) classifier_test_gen = generate(data, partition='test', batch=10) test_i, test_o, test_w = next(classifier_test_gen) #print test_i inputs = Input(shape=(len(config.gen_default_variables), ), name='input') dense = Dense(32, activation='tanh', name='dense1', kernel_initializer='lecun_uniform')(inputs) dense = Dense(32, activation='tanh', name='dense2', kernel_initializer='lecun_uniform')(dense) dense = Dense(32,
APOSTLE = 'v4_0' modeldir = 'cce_adversary/' system('mkdir -p %s'%modeldir) system('cp %s %s/train_%s.py'%(argv[0], modeldir, APOSTLE)) ### instantiate data loaders ### top = make_coll(basedir + '/PARTITION/Top_*_CATEGORY.npy') qcd = make_coll(basedir + '/PARTITION/QCD_*_CATEGORY.npy') data = [top, qcd] ### first build the classifier! ### # set up data opts = {'decorr_mass':False} classifier_train_gen = generate(data, partition='train', batch=1000, **opts) classifier_validation_gen = generate(data, partition='validate', batch=10000, **opts) classifier_test_gen = generate(data, partition='test', batch=10, **opts) test_i, test_o, test_w = next(classifier_test_gen) inputs = Input(shape=(len(config.gen_default_variables),), name='input') dense = Dense(32, activation='tanh',name='dense1',kernel_initializer='lecun_uniform') (inputs) dense = Dense(32, activation='tanh',name='dense2',kernel_initializer='lecun_uniform') (dense) dense = Dense(32, activation='tanh',name='dense3',kernel_initializer='lecun_uniform') (dense) y_hat = Dense(config.n_truth, activation='softmax') (dense) classifier = Model(inputs=[inputs], outputs=[y_hat]) classifier.compile(optimizer=Adam(lr=0.0005), loss=['categorical_crossentropy'], metrics=['accuracy'])