def peek(self, title="RHESSI Observing Summary Count Rate", **kwargs): """Plots RHESSI Count Rate light curve. An example is shown below. .. plot:: from sunpy import lightcurve as lc from sunpy.data.sample import RHESSI_LIGHTCURVE rhessi = lc.RHESSISummaryLightCurve.create(RHESSI_LIGHTCURVE) rhessi.peek() Parameters ---------- title : str The title of the plot. **kwargs : dict Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() axes = plt.gca() #dates = matplotlib.dates.date2num(self.data.index) lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.data.iteritems()): axes.plot_date(self.data.index, frame.values, '-', label=item, lw=2, color=lc_color) axes.set_yscale("log") axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) axes.set_title('RHESSI Observing Summary Count Rates') axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # @todo: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() figure.show()
def peek(self, title="RHESSI Observing Summary Count Rate", **kwargs): """ Plots RHESSI Count Rate light curve. An example is shown below: .. plot:: import sunpy.data.sample import sunpy.timeseries rhessi = sunpy.timeseries.TimeSeries(sunpy.data.sample.RHESSI_TIMESERIES, source='RHESSI') rhessi.peek() Parameters ---------- title : `str` The title of the plot. **kwargs : `dict` Additional plot keyword arguments that are handed to `axes.plot` functions """ # Check we have a timeseries valid for plotting self._validate_data_for_plotting() figure = plt.figure() axes = plt.gca() lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.to_dataframe().items()): axes.plot_date(self.to_dataframe().index, frame.values, '-', label=item, lw=2, color=lc_color, **kwargs) axes.set_yscale("log") axes.set_xlabel( datetime.datetime.isoformat(self.to_dataframe().index[0])[0:10]) axes.set_title(title) axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # TODO: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() return figure
def peek(self, title="RHESSI Observing Summary Count Rate", **kwargs): """Plots RHESSI Count Rate light curve. An example is shown below. .. plot:: import sunpy.data.sample import sunpy.timeseries rhessi = sunpy.timeseries.TimeSeries(sunpy.data.sample.RHESSI_LIGHTCURVE, source='RHESSI') rhessi.peek() Parameters ---------- title : `str` The title of the plot. **kwargs : `dict` Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() figure = plt.figure() axes = plt.gca() #dates = matplotlib.dates.date2num(self.data.index) lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.data.iteritems()): axes.plot_date(self.data.index, frame.values, '-', label=item, lw=2, color=lc_color) axes.set_yscale("log") axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) axes.set_title('RHESSI Observing Summary Count Rates') axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # @todo: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() figure.show()
def peek(self, title="RHESSI Observing Summary Count Rate", **kwargs): """Plots RHESSI Count Rate light curve. An example is shown below. .. plot:: from sunpy import lightcurve as lc rhessi = lc.RHESSISummaryLightCurve.create('2012/06/01 01:30', '2012/06/01 03:35') rhessi.peek() Parameters ---------- title : str The title of the plot. **kwargs : dict Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() axes = plt.gca() #dates = matplotlib.dates.date2num(self.data.index) lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.data.iteritems()): axes.plot_date(self.data.index, frame.values, '-', label=item, lw=2, color=lc_color) axes.set_yscale("log") axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) axes.set_title('RHESSI Observing Summary Count Rates') axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # @todo: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() figure.show()
def peek(self): """Plots RHESSI Count Rate light curve. An example is shown below. .. plot:: from sunpy import lightcurve as lc from sunpy.data.sample import RHESSI_TIMESERIES rhessi = lc.RHESSISummaryLightCurve.create(RHESSI_TIMESERIES) rhessi.peek() Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() axes = plt.gca() lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.data.iteritems()): axes.plot_date(self.data.index, frame.values, '-', label=item, lw=2, color=lc_color) axes.set_yscale("log") axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) axes.set_title('RHESSI Observing Summary Count Rates') axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # @todo: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() figure.show()
def peek(self, title="RHESSI Observing Summary Count Rate"): """ Plots RHESSI Count Rate light curve. An example is shown below: .. plot:: import sunpy.data.sample import sunpy.timeseries rhessi = sunpy.timeseries.TimeSeries(sunpy.data.sample.RHESSI_TIMESERIES, source='RHESSI') rhessi.peek() Parameters ---------- title : `str` The title of the plot. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() figure = plt.figure() axes = plt.gca() lc_linecolors = rhessi.hsi_linecolors() for lc_color, (item, frame) in zip(lc_linecolors, self.data.items()): axes.plot_date(self.data.index, frame.values, '-', label=item, lw=2, color=lc_color) axes.set_yscale("log") axes.set_xlabel(datetime.datetime.isoformat(self.data.index[0])[0:10]) axes.set_title(title) axes.set_ylabel('Count Rate s$^{-1}$ detector$^{-1}$') axes.yaxis.grid(True, 'major') axes.xaxis.grid(False, 'major') axes.legend() # TODO: display better tick labels for date range (e.g. 06/01 - 06/05) formatter = matplotlib.dates.DateFormatter('%H:%M') axes.xaxis.set_major_formatter(formatter) axes.fmt_xdata = matplotlib.dates.DateFormatter('%H:%M') figure.autofmt_xdate() return figure