"rm -rf resources/region-data/raw-images && mkdir resources/region-data/raw-images"
)
os.system(
    "rm -rf resources/region-data/r-masked-images && mkdir resources/region-data/r-masked-images"
)
os.system(
    "rm -rf resources/region-data/e-masked-images && mkdir resources/region-data/e-masked-images"
)
os.system(
    "rm -rf resources/region-data/c-masked-images && mkdir resources/region-data/c-masked-images"
)

##### import data

RECORDER.info_text("Importing AIA171 data")
MAPCUBE_AIA_171 = smap.Map("/Volumes/Nicholas Data/AIA171/*.fits",
                           sequence=True)
# MAPCUBE_AIA_171 = smap.Map("%s/resources/aia-fits-files/*.171.image_lev1.fits" % MAIN_DIR, sequence = True)
RECORDER.info_text("Importing AIA304 data")
MAPCUBE_AIA_304 = smap.Map("/Volumes/Nicholas Data/AIA304/*.fits",
                           sequence=True)
# MAPCUBE_AIA_304 = smap.Map("%s/resources/aia-fits-files/*.304.image_lev1.fits" % MAIN_DIR, sequence = True)
RECORDER.info_text("Importing HMI magnetogram data\n")
MAPCUBE_HMI = smap.Map("/Volumes/Nicholas Data/HMI/*.fits", sequence=True)
# MAPCUBE_HMI = smap.Map("%s/resources/hmi-fits-files/*.fits" % MAIN_DIR, sequence = True)

##### prepare mapcube

DATA = {
    "AIA171": MAPCUBE_AIA_171,
    "AIA304": MAPCUBE_AIA_304,
    "HMI": MAPCUBE_HMI
data_aia = client.get(result_aia, methods=('URL-FILE_Rice', 'URL-FILE')).wait()
print('\n' + str(data_hmi))
print(str(data_aia) + '\n')

# Cropping into the active region within the HMI map
str_vol_filepath = data_hmi[0][0:-5] + '_Bxyz.npy'
xrange = u.Quantity([50, 300] * u.arcsec)
yrange = u.Quantity([-350, -100] * u.arcsec)
zrange = u.Quantity([0, 250] * u.arcsec)
xrangeextended = u.Quantity([xrange.value[0] - 50, xrange.value[1] + 50] *
                            xrange.unit)
yrangeextended = u.Quantity([yrange.value[0] - 50, yrange.value[1] + 50] *
                            yrange.unit)

# Open the map and create a cropped version for the extrapolation.
map_hmi = mp.Map(data_hmi[0])
map_hmi_cropped = map_hmi.submap(xrange, yrange)
dimensions = u.Quantity([20, 20] * u.pixel)
map_hmi_cropped_resampled = map_hmi_cropped.resample(dimensions,
                                                     method='linear')

# Open the map and create a cropped version for the visualisation.
map_boundary = mp.Map(data_hmi[0])

map_boundary_cropped = map_boundary.submap(xrangeextended, yrangeextended)

aPotExt = PotentialExtrapolator(map_hmi_cropped_resampled,
                                filepath=str_vol_filepath,
                                zshape=20,
                                zrange=zrange)
aMap3D = aPotExt.extrapolate()
Example #3
0
from PolarCoronalHoles import PCH_Tools, PCH_Detection, PCH_stats, PCH_series
from sunpy import map
import sunpy.data.sample
import numpy as np
from skimage import measure
from sunpy.coordinates.utils import GreatArc
import matplotlib.pyplot as plt
from astropy import units as u
import pandas as pd

test_map = map.Map(sunpy.data.sample.AIA_171_IMAGE)


def assertEquals(var1, var2):
    if var1 == var2:
        return True
    else:
        return False


def test_rsun_pix():
    pixels = PCH_Detection.rsun_pix(test_map)

    if assertEquals(np.sum(pixels), 786.95568651283929):
        print('Pass')
    else:
        print('rsun_pix fails')


def test_pch_mask():
    PCH_Detection.pch_mask(test_map)
Example #4
0
def aia171_test_map():
    return smap.Map(test.get_test_filepath('aia_171_level1.fits'))
Example #5
0
def test_mapcube_coalign_by_match_template():
    # take the AIA image and shift it
    # Pixel displacements have the y-displacement as the first entry
    nx = layer_shape[1]
    ny = layer_shape[0]
    pixel_displacements = np.asarray([1.6, 10.1])
    known_displacements = {
        'x': np.asarray([0.0, pixel_displacements[1] * testmap.scale['x']]),
        'y': np.asarray([0.0, pixel_displacements[0] * testmap.scale['y']])
    }

    # Create a map that has been shifted a known amount.
    d1 = sp_shift(testmap.data, pixel_displacements)
    m1 = map.Map((d1, testmap.meta))

    # Create the mapcube
    mc = map.Map([testmap, m1], cube=True)

    # Test to see if the code can recover the displacements. Do the coalignment
    # using the "return_displacements_only" option
    test_displacements = mapcube_coalign_by_match_template(
        mc, return_displacements_only=True)
    # Assert
    assert_allclose(test_displacements['x'],
                    known_displacements['x'],
                    rtol=5e-2,
                    atol=0)
    assert_allclose(test_displacements['y'],
                    known_displacements['y'],
                    rtol=5e-2,
                    atol=0)

    # Test setting the template as a ndarray
    template_ndarray = testmap.data[ny / 4:3 * ny / 4, nx / 4:3 * nx / 4]
    test_displacements = mapcube_coalign_by_match_template(
        mc, template=template_ndarray, return_displacements_only=True)
    # Assert
    assert_allclose(test_displacements['x'],
                    known_displacements['x'],
                    rtol=5e-2,
                    atol=0)
    assert_allclose(test_displacements['y'],
                    known_displacements['y'],
                    rtol=5e-2,
                    atol=0)

    # Test setting the template as GenericMap
    submap = testmap.submap([nx / 4, 3 * nx / 4], [ny / 4, 3 * ny / 4],
                            units='pixels')
    test_displacements = mapcube_coalign_by_match_template(
        mc, template=submap, return_displacements_only=True)
    # Assert
    assert_allclose(test_displacements['x'],
                    known_displacements['x'],
                    rtol=5e-2,
                    atol=0)
    assert_allclose(test_displacements['y'],
                    known_displacements['y'],
                    rtol=5e-2,
                    atol=0)

    # Test setting the template as something other than a ndarray and a
    # GenericMap.  This should throw a ValueError.
    try:
        test_displacements = mapcube_coalign_by_match_template(
            mc, template='broken')
    except ValueError:
        pass

    # Test passing in displacements
    test_apply_displacements = {
        'x': -test_displacements['x'],
        'y': -test_displacements['y']
    }
    test_displacements = mapcube_coalign_by_match_template(
        mc,
        apply_displacements=test_apply_displacements,
        return_displacements_only=True)
    assert_allclose(test_displacements['x'],
                    test_apply_displacements['x'],
                    rtol=5e-2,
                    atol=0)
    assert_allclose(test_displacements['y'],
                    test_apply_displacements['y'],
                    rtol=5e-2,
                    atol=0)

    # Test returning using the "with_displacements" option
    test_output = mapcube_coalign_by_match_template(mc,
                                                    with_displacements=True)
    # Assert
    assert (isinstance(test_output[0], map.MapCube))
    assert_allclose(test_output[1]['x'],
                    known_displacements['x'],
                    rtol=5e-2,
                    atol=0)
    assert_allclose(test_output[1]['y'],
                    known_displacements['y'],
                    rtol=5e-2,
                    atol=0)

    # Test returning with no extra options - the code returns a mapcube only
    test_output = mapcube_coalign_by_match_template(mc)
    assert (isinstance(test_output, map.MapCube))

    # Test returning with no clipping.  Output layers should have the same size
    # as the original input layer.
    test_mc = mapcube_coalign_by_match_template(mc, clip=False)
    assert (test_mc[0].data.shape == testmap.data.shape)
    assert (test_mc[1].data.shape == testmap.data.shape)
Example #6
0
import matplotlib.pyplot as plt 
from sunpy import map 
from astropy.io import fits
import datetime
import os
from astropy import units as u

date_search = datetime.datetime.utcnow()

base_path = '/Users/admin/Documents/solarmonitor_2_0/sol_mon/data/'+date_search.strftime('%Y/%m/%d/')+'fits/'


mapy = map.Map(base_path + 'AIA/*.fits')

def plot_map(mapy):


	fig = plt.figure(figsize = (10, 10))
	ax = fig.add_subplot(111,projection = mapy)

	plt.grid(False)

	mapy.plot(axes = ax, vmin = 0, vmax = mapy.mean() + 6*mapy.std())

	mapy.draw_grid(grid_spacing = 10*u.deg, axes = ax)#, ls = 'dashed')

	ax.set_xlabel('X (arcsec)')
	ax.set_ylabel('Y (arcsec)')
	ax.set_title('AIA Tests', pad = 0.005)

	ax.text(0.76, 0.018, 'SolarMonitor.org', color = 'w', transform = ax.transAxes, fontsize = 'xx-large')
Example #7
0
def find_carr_coords(cme_root, craft, c1cme, eucme):
    """ Function to calculate carrington longitude and latitude of events in
    eucme and add these to the dataframe. These are used to create plots of
    each event.
    """
    # Find the euvi fits files
    if craft == 'A':
        fn_tag = '*eua.fts'
    elif craft == 'B':
        fn_tag = '*eub.fts'

    # Calculate Carrington Longitudes and Latitudes of source locations
    eucme['carrington_longitude'] = pd.Series(np.zeros(len(eucme)) * np.NaN,
                                              index=eucme.index)
    eucme['carrington_latitude'] = pd.Series(np.zeros(len(eucme)) * np.NaN,
                                             index=eucme.index)
    for i in range(len(eucme)):
        print i
        cme_root_new = r'/home/sq112614/SS/Images/EUVI/ST' + craft
        cme_root2 = cme_root_new + '/cme_' + '{0:02d}'.format(i + 1)
        euvi_files = find_files(cme_root2, fn_tag)
        print len(euvi_files)
        if len(euvi_files) > 0:
            print '**********'
            print cme_root2
            print euvi_files
            # Files exist, load in the subpy map to work out carrington coordinates
            euvi = smap.Map(euvi_files[0])
            # Convert the 256x256 coordinates into correctly scaled coordinates
            xn = eucme['l'][i] + eucme['w'][i] / 2
            yn = eucme['b'][i] + eucme['h'][i] / 2
            xn = (xn / 256) * euvi.dimensions[0]
            yn = euvi.dimensions[1] - (yn / 256) * euvi.dimensions[1]

            # Get HPC and HPR coords
            lon, lat = HPC_LONLAT(euvi)
            el, pa = HPC_to_HPR(lon.to('deg').value, lat.to('deg').value)
            # Get Carrington coords:
            cf = euvi.coordinate_frame
            hpc = spc.Helioprojective(Tx=lon,
                                      Ty=lat,
                                      D0=cf.D0,
                                      B0=cf.B0,
                                      L0=cf.L0,
                                      representation=cf.representation)
            hcc = spc.Heliocentric(D0=cf.D0, B0=cf.B0, L0=cf.L0)
            hcc = spc.hpc_to_hcc(hpc, hcc)
            hgs = spc.HeliographicStonyhurst(dateobs=cf.dateobs)
            hgc = spc.HeliographicCarrington(dateobs=cf.dateobs)
            hgs = spc.hcc_to_hgs(hcc, hgs)
            hgc = spc.hgs_to_hgc(hgs, hgc)

            # Try looking up carrington coordinates
            idy = np.int(np.round(yn.value))
            idx = np.int(np.round(xn.value))
            hgc_lon = hgc.lon[idy, idx]
            hgc_lat = hgc.lat[idy, idx]
            # If returned NaNs extrapolate to limb
            if np.logical_or(np.isnan(hgc_lon), np.isnan(hgc_lat)):
                print('Limb Extrapolation')
                # Get elongation of Limb
                el_limb = np.arctan(0.99 * euvi.rsun_meters /
                                    euvi.dsun).to('deg')
                # Get position angle of point
                ppa = pa[idy, idx]
                # Find pixel best matching this elongation and pa
                pa_diff = np.abs(pa - ppa)
                el_diff = np.abs(el - el_limb)
                diff = np.sqrt(pa_diff**2 + el_diff**2)
                idy, idx = np.unravel_index(np.argmin(diff), diff.shape)
                hgc_lon = hgc.lon[idy, idx]
                hgc_lat = hgc.lat[idy, idx]

            # Make sure hgc lon runs between 0 and 360, rather than -180, 180
            if hgc_lon.value < 0:
                hgc_lon = 360 * u.deg + hgc_lon

            euvi.peek()
            plt.contour(pa.value, levels=[c1cme['pa'][i]], colors=['r'])
            plt.plot(xn.value, yn.value, 'yo', markersize=12)
            plt.plot(idx, idy, 'y*', markersize=12)
            plt.contour(hgc.lon.value, colors=['white'])
            plt.contour(hgc.lat.value, colors=['m'])
            plt.draw()
            name = cme_root2 + r'\euvi_eruption_id.png'
            plt.savefig(name)
            plt.close('all')
            # Mark out the coords for chucking in the array
            eucme.loc[eucme.index == i, 'carrington_longitude'] = hgc_lon.value
            eucme.loc[eucme.index == i, 'carrington_latitude'] = hgc_lat.value
    return eucme
Example #8
0
def clean_significance(workdir='',
                       xstart=None,
                       xend=None,
                       ystart=None,
                       yend=None):
    #recognize signal's area automaticlly(distance from brightest point to center point)
    #workdir='/srg/ywei/data/eovsa/sep6_dofinal/slfcal/images'
    fitslist = []
    fitslist.append(
        makelist(tdir=workdir, keyword1='0testing', keyword2='fits'))
    fitslist.append(
        makelist(tdir=workdir, keyword1='1testing', keyword2='fits'))
    fitslist.append(
        makelist(tdir=workdir, keyword1='2testing', keyword2='fits'))
    fitslist.append(
        makelist(tdir=workdir, keyword1='3testing', keyword2='fits'))
    round_loop = []
    for roun in range(4):
        sp_loop = []
        background_list = []
        briest_list = []
        significance = []
        mask = []
        dist = []
        cur_list = fitslist[roun]
        for sp in range(30):
            cur_emap = smap.Map(cur_list[sp])
            sz = cur_emap.data.shape
            backregion = cur_emap.data[0, 0, xstart:xend, ystart:yend]
            background_list.append(np.sqrt(np.nanmean(np.power(backregion,
                                                               2))))
            briest_list.append(np.nanmax(cur_emap.data))
            significance.append(
                np.nanmax(cur_emap.data) /
                np.sqrt(np.nanmean(np.power(backregion, 2))))
            cur_mask = seed_grow(im=cur_emap.data[0, 0, :, :],
                                 x=0,
                                 y=0,
                                 threshold=60000.0)
            #print 'for spw' + str(sp)+', in round ' +str(roun)+' significance is '+ str(np.nanmax(cur_emap.data[0,0,:,:])/np.sqrt(np.nanmean(np.power(backregion,2))))
            #print 'for spw' + str(sp)+', in round ' +str(roun)+' significance is '+ str(np.nanmax(cur_emap.data[0,0,:,2]))
            mask.append(np.nanmean(cur_mask))
            cur_im = cur_emap.data[0, 0, :, :]
            loc = np.where(cur_im == np.nanmax(cur_im))
            distance = np.sqrt(
                abs(loc[0][0] - 128)**2 + abs(loc[1][0] - 128)**2)
            dist.append(distance)

            print ' mask now is ' + str(distance)
        sp_loop.append(background_list)
        sp_loop.append(briest_list)
        sp_loop.append(significance)
        sp_loop.append(mask)
        sp_loop.append(dist)
        round_loop.append(sp_loop)
    #return round_loop
    print 'shape now is  ' + str(round_loop[0][2][0])
    rx = [0, 1, 2, 3]
    #plt.xlabel('nround')
    #plt.ylabel('significance')
    #plt.title('spw 10')
    #plt.plot(rx,[round_loop[0][2][9],round_loop[1][2][9],round_loop[2][2][9],round_loop[3][2][9]],'ro')
    rsp = np.empty(30)
    yax = np.empty(30)
    for nn in range(30):
        yax[nn] = abs(round_loop[0][4][nn] - round_loop[3][4][nn])
        rsp[nn] = nn
        print yax[nn]
    plt.plot(rsp, yax, 'ro')
    #plt.plot(rx,[round_loop[0][2][9],round_loop[1][2][9],round_loop[2][2][9],round_loop[3][2][9]],'ro')
    plt.show()
Example #9
0
def plot_results():
    fits_data = fits.open(output_path2)
    map_halpha = map.Map(fits_data[0].data, fits_data[0].header)
    map_halpha.plot()