Example #1
0
    def _predict(self, loader):
        self.model.eval()

        preds = {}
        charts, probs = [], []
        for words, *feats in progress_bar(loader):
            mask = words.ne(self.WORD.pad_index)
            mask = mask.unsqueeze(1) & mask.unsqueeze(2)
            mask[:, 0] = 0
            lens = mask[:, 1].sum(-1).tolist()
            s_edge, s_label = self.model(words, feats)
            edge_preds, label_preds = self.model.decode(s_edge, s_label)
            chart_preds = label_preds.masked_fill(~(edge_preds.gt(0) & mask),
                                                  -1)
            charts.extend(chart[1:i, :i].tolist()
                          for i, chart in zip(lens, chart_preds.unbind()))
            if self.args.prob:
                probs.extend([
                    prob[1:i, :i].cpu()
                    for i, prob in zip(lens,
                                       s_edge.softmax(-1).unbind())
                ])
        charts = [
            CoNLL.build_relations(
                [[self.LABEL.vocab[i] if i >= 0 else None for i in row]
                 for row in chart]) for chart in charts
        ]
        preds = {'labels': charts}
        if self.args.prob:
            preds['probs'] = probs

        return preds
Example #2
0
    def _predict(self, loader):
        self.model.eval()

        preds = {'labels': [], 'probs': [] if self.args.prob else None}
        for words, *feats in progress_bar(loader):
            word_mask = words.ne(self.args.pad_index)
            mask = word_mask if len(words.shape) < 3 else word_mask.any(-1)
            mask = mask.unsqueeze(1) & mask.unsqueeze(2)
            mask[:, 0] = 0
            lens = mask[:, 1].sum(-1).tolist()
            s_edge, s_sib, s_cop, s_grd, s_label = self.model(words, feats)
            s_edge = self.model.inference((s_edge, s_sib, s_cop, s_grd), mask)
            label_preds = self.model.decode(s_edge,
                                            s_label).masked_fill(~mask, -1)
            preds['labels'].extend(chart[1:i, :i].tolist()
                                   for i, chart in zip(lens, label_preds))
            if self.args.prob:
                preds['probs'].extend([
                    prob[1:i, :i].cpu()
                    for i, prob in zip(lens, s_edge.unbind())
                ])
        preds['labels'] = [
            CoNLL.build_relations(
                [[self.LABEL.vocab[i] if i >= 0 else None for i in row]
                 for row in chart]) for chart in preds['labels']
        ]

        return preds
Example #3
0
    def _predict(self, loader):
        self.model.eval()

        preds = {}
        charts, probs = [], []
        for words, feats in progress_bar(loader):
            mask = words.ne(self.WORD.pad_index)
            mask = mask.unsqueeze(1) & mask.unsqueeze(2)
            lens = mask[:, 0].sum(-1).tolist()
            s_edge, s_label = self.model(words, feats)
            charts.extend(self.model.decode(s_edge, s_label, mask))
            if self.args.prob:
                edge_probs = s_edge.softmax(-1)
                probs.extend([
                    prob[:i, :i].cpu()
                    for i, prob in zip(lens, edge_probs.unbind())
                ])
        charts = [[[self.LABEL.vocab[i] if i >= 0 else None for i in row]
                   for row in chart] for chart in charts]
        preds = {'labels': [CoNLL.build_relations(chart) for chart in charts]}
        if self.args.prob:
            preds['probs'] = probs

        return preds