def test_expand_corrmats_same(): sub_corrmat = _get_corrmat(bo) np.fill_diagonal(sub_corrmat, 0) # <- possible failpoint sub_corrmat_z = _r2z(sub_corrmat) weights = _rbf(test_model.locs, bo.locs) expanded_num_p, expanded_denom_p = _expand_corrmat_predict(sub_corrmat_z, weights) model_corrmat_p = np.divide(expanded_num_p, expanded_denom_p) expanded_num_f, expanded_denom_f = _expand_corrmat_predict(sub_corrmat_z, weights) model_corrmat_f = np.divide(expanded_num_f, expanded_denom_f) np.fill_diagonal(model_corrmat_f, 0) np.fill_diagonal(model_corrmat_p, 0) s = test_model.locs.shape[0] - bo.locs.shape[0] Kba_p = model_corrmat_p[:s, s:] Kba_f = model_corrmat_f[:s, s:] Kaa_p = model_corrmat_p[s:, s:] Kaa_f = model_corrmat_f[s:, s:] assert isinstance(Kaa_p, np.ndarray) assert isinstance(Kaa_f, np.ndarray) assert np.allclose(Kaa_p, Kaa_f, equal_nan=True) assert np.allclose(Kba_p, Kba_f, equal_nan=True)
def test_expand_corrmat_predict(): sub_corrmat = _get_corrmat(bo) np.fill_diagonal(sub_corrmat, 0) sub_corrmat = _r2z(sub_corrmat) weights = _rbf(test_model.locs, bo.locs) expanded_num_p, expanded_denom_p = _expand_corrmat_predict(sub_corrmat, weights) assert isinstance(expanded_num_p, np.ndarray) assert isinstance(expanded_denom_p, np.ndarray) assert np.shape(expanded_num_p)[0] == test_model.locs.shape[0]
def test_get_corrmat(): corrmat = _get_corrmat(data[0]) assert isinstance(corrmat, np.ndarray)