Example #1
0
def unwrapped_check(env):
    # image observations
    if isinstance(env.observation_space, spaces.Box):
        if ((env.observation_space.low.shape == 3)
                and (env.observation_space.low == 0).all()
                and (len(env.observation_space.shape[2]) == 3)
                and (env.observation_space.high == 255).all()):
            env = max_observation_v0(env, 2)
            env = color_reduction_v0(env, mode="full")
            env = normalize_obs_v0(env)

    # box action spaces
    if isinstance(env.action_space, spaces.Box):
        env = clip_actions_v0(env)
        env = scale_actions_v0(env, 0.5)

    # stackable observations
    if isinstance(env.observation_space, spaces.Box) or isinstance(
            env.observation_space, spaces.Discrete):
        env = frame_stack_v1(env, 2)

    # not discrete and not multibinary observations
    if not isinstance(env.observation_space,
                      spaces.Discrete) and not isinstance(
                          env.observation_space, spaces.MultiBinary):
        env = dtype_v0(env, np.float16)
        env = flatten_v0(env)
        env = frame_skip_v0(env, 2)

    # everything else
    env = clip_reward_v0(env, lower_bound=-1, upper_bound=1)
    env = delay_observations_v0(env, 2)
    env = sticky_actions_v0(env, 0.5)
    env = nan_random_v0(env)
    env = nan_zeros_v0(env)

    assert env.unwrapped.__class__ == DummyEnv, f"Failed to unwrap {env}"
Example #2
0
def unwrapped_check(env):
    env.reset()
    agents = env.agents

    if image_observation(env, agents):
        env = max_observation_v0(env, 2)
        env = color_reduction_v0(env, mode="full")
        env = normalize_obs_v0(env)

    if box_action(env, agents):
        env = clip_actions_v0(env)
        env = scale_actions_v0(env, 0.5)

    if observation_homogenizable(env, agents):
        env = pad_observations_v0(env)
        env = frame_stack_v1(env, 2)
        env = agent_indicator_v0(env)
        env = black_death_v3(env)

    if (not_dict_observation(env, agents)
            and not_discrete_observation(env, agents)
            and not_multibinary_observation(env, agents)):
        env = dtype_v0(env, np.float16)
        env = flatten_v0(env)
        env = frame_skip_v0(env, 2)

    if action_homogenizable(env, agents):
        env = pad_action_space_v0(env)

    env = clip_reward_v0(env, lower_bound=-1, upper_bound=1)
    env = delay_observations_v0(env, 2)
    env = sticky_actions_v0(env, 0.5)
    env = nan_random_v0(env)
    env = nan_zeros_v0(env)

    assert env.unwrapped.__class__ == DummyEnv, f"Failed to unwrap {env}"
Example #3
0
def new_dummy():
    return DummyEnv(base_obs, base_obs_space, base_act_spaces)


wrappers = [
    supersuit.color_reduction_v0(new_dummy(), "R"),
    supersuit.resize_v0(dtype_v0(new_dummy(), np.uint8), x_size=5, y_size=10),
    supersuit.resize_v0(dtype_v0(new_dummy(), np.uint8), x_size=5, y_size=10, linear_interp=True),
    supersuit.dtype_v0(new_dummy(), np.int32),
    supersuit.flatten_v0(new_dummy()),
    supersuit.reshape_v0(new_dummy(), (64, 3)),
    supersuit.normalize_obs_v0(new_dummy(), env_min=-1, env_max=5.0),
    supersuit.frame_stack_v1(new_dummy(), 8),
    supersuit.reward_lambda_v0(new_dummy(), lambda x: x / 10),
    supersuit.clip_reward_v0(new_dummy()),
    supersuit.clip_actions_v0(new_continuous_dummy()),
    supersuit.frame_skip_v0(new_dummy(), 4),
    supersuit.frame_skip_v0(new_dummy(), (4, 6)),
    supersuit.sticky_actions_v0(new_dummy(), 0.75),
    supersuit.delay_observations_v0(new_dummy(), 1),
]


@pytest.mark.parametrize("env", wrappers)
def test_basic_wrappers(env):
    env.seed(5)
    obs = env.reset()
    act_space = env.action_space
    obs_space = env.observation_space
    assert obs_space.contains(obs)
    assert obs.dtype == obs_space.dtype
Example #4
0
    supersuit.flatten_v0(knights_archers_zombies_v4.env()),
    supersuit.reshape_v0(knights_archers_zombies_v4.env(), (512 * 512, 3)),
    supersuit.normalize_obs_v0(dtype_v0(knights_archers_zombies_v4.env(),
                                        np.float32),
                               env_min=-1,
                               env_max=5.0),
    supersuit.frame_stack_v1(knights_archers_zombies_v4.env(), 8),
    supersuit.pad_observations_v0(knights_archers_zombies_v4.env()),
    supersuit.pad_action_space_v0(knights_archers_zombies_v4.env()),
    supersuit.black_death_v0(knights_archers_zombies_v4.env()),
    supersuit.agent_indicator_v0(knights_archers_zombies_v4.env(), True),
    supersuit.agent_indicator_v0(knights_archers_zombies_v4.env(), False),
    supersuit.reward_lambda_v0(knights_archers_zombies_v4.env(),
                               lambda x: x / 10),
    supersuit.clip_reward_v0(knights_archers_zombies_v4.env()),
    supersuit.clip_actions_v0(prison_v2.env(continuous=True)),
    supersuit.frame_skip_v0(knights_archers_zombies_v4.env(), 4),
    supersuit.sticky_actions_v0(knights_archers_zombies_v4.env(), 0.75),
    supersuit.delay_observations_v0(knights_archers_zombies_v4.env(), 3),
]


@pytest.mark.parametrize("env", wrappers)
def test_pettingzoo_aec_api(env):
    api_test.api_test(env)


parallel_wrappers = [
    supersuit.frame_stack_v1(knights_archers_zombies_v4.parallel_env(), 8),
    supersuit.reward_lambda_v0(knights_archers_zombies_v4.parallel_env(),
                               lambda x: x / 10),