def castToRegression(self, values): """Converts data set into a SupervisedDataSet for regression. Classes are used as indices into the value array given.""" regDs = SupervisedDataSet(self.indim, 1) fields = self.getFieldNames() fields.remove('target') for f in fields: regDs.setField(f, self[f]) regDs.setField('target', values[self['class'].astype(int)]) return regDs
def __init__(self, inp, target, M, inp_transform=None, tgt_transform=None): """ Initialize an MDN dataset. @param inp: int or np.array, input data or input dimension @param target: int or np.array, target data or target dimension @param M: number of Gaussian kernels #TODO: remove this from dataset! @param inp_transform: set of input transformations that have been applied to the dataset #TODO: remove @param tgt_transform: #TODO: remove """ SupervisedDataSet.__init__(self, inp, target) self.M = M if np.isscalar(target): self.c = target else: self.c = target.shape[1] self.inp_transform=inp_transform self.tgt_transform=tgt_transform
def __init__(self, inp, target=1, nb_classes=0, class_labels=None): """Initialize an empty dataset. `inp` is used to specify the dimensionality of the input. While the number of targets is given by implicitly by the training samples, it can also be set explicity by `nb_classes`. To give the classes names, supply an iterable of strings as `class_labels`.""" # FIXME: hard to keep nClasses synchronized if appendLinked() etc. is used. SupervisedDataSet.__init__(self, inp, target) self.addField('class', 1) self.nClasses = nb_classes if len(self) > 0: # calculate class histogram, if we already have data self.calculateStatistics() self.convertField('target', int) if class_labels is None: self.class_labels = list(set(self.getField('target').flatten())) else: self.class_labels = class_labels # copy classes (may be changed into other representation) self.setField('class', self.getField('target'))
def __init__(self, indim, targetdim): SupervisedDataSet.__init__(self, indim, targetdim) # add field that stores the beginning of a new episode self.addField('sequence_index', 1) self.append('sequence_index', 0) self.currentSeq = 0
def clear(self): SupervisedDataSet.clear(self, True) self._appendUnlinked('sequence_index', [0]) self.currentSeq = 0