spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
    spamwriter.writerow(["Prefix length", "Groud truth", "Predicted", "Levenshtein", "Damerau", "Jaccard", "Ground truth times", "Predicted times", "RMSE", "MAE", "Median AE"])
    for prefix_size in range(prefix_size_pred_from, prefix_size_pred_to):
        print(prefix_size)
        for line, times, times2, times3 in zip(lines, lines_t, lines_t2, lines_t3):
            prediction_end_reached = False
            times.append(0)
            cropped_line = ''.join(line[:prefix_size])
            cropped_times = times[:prefix_size]
            cropped_times3 = times3[:prefix_size]
            if len(times2)<prefix_size:
                continue # make no prediction for this case, since this case has ended already

            # initialize root of the tree for beam search
            total_predicted_time_initialization = 0
            search_tree_root = MultileafTree(beam_size, encode(cropped_line, cropped_times, cropped_times3,maxlen,chars, char_indices, divisor, divisor2),
                                             cropped_line, total_predicted_time_initialization)

            prediction_end_reached = False


            ground_truth = ''.join(line[prefix_size:prefix_size+predict_size])
            ground_truth_t = times2[prefix_size-1]
            case_end_time = times2[len(times2)-1]
            ground_truth_t = case_end_time-ground_truth_t
            predicted = ''



            for i in range(predict_size):
                #here we will take data from the node in the tree used to prun
def run_experiments(log_identificator, formula_type):
    eventlog, path_to_model_file, beam_size, \
        prefix_size_pred_from, prefix_size_pred_to, formula = activateSettings(log_identificator, formula_type)

    current_path = os.path.abspath(getsourcefile(lambda: 0))
    current_dir = os.path.dirname(current_path)
    parent_dir = current_dir[:current_dir.rfind(os.path.sep)]

    sys.path.insert(0, parent_dir)

    start_time = time.time()

    lines, lines_t, lines_t2, lines_t3, maxlen, chars, char_indices, divisor, divisor2, \
        divisor3, predict_size, target_indices_char, target_char_indices = prepare_testing_data(eventlog)

    # find cycles and modify the probability functionality goes here
    stop_symbol_probability_amplifier_current = 1

    # modify to be able to get second best prediction
    def getSymbol(predictions, ith_best=0):
        predictions[
            0] = predictions[0] * stop_symbol_probability_amplifier_current
        i = np.argsort(predictions)[len(predictions) - ith_best - 1]
        return target_indices_char[i]

    one_ahead_gt = []
    one_ahead_pred = []

    # load model, set this to the model generated by train.py
    model = load_model(path_to_model_file)
    stop_symbol_probability_amplifier_current = 1
    # make predictions
    with open(
            'output_files/results/' + formula_type +
            '/suffix_and_remaining_time2_%s' % eventlog, 'wb') as csvfile:
        spamwriter = csv.writer(csvfile,
                                delimiter=',',
                                quotechar='|',
                                quoting=csv.QUOTE_MINIMAL)
        spamwriter.writerow([
            "Prefix length", "Groud truth", "Predicted", "Levenshtein",
            "Damerau", "Jaccard", "Ground truth times", "Predicted times",
            "RMSE", "MAE", "Median AE"
        ])
        for prefix_size in range(prefix_size_pred_from, prefix_size_pred_to):
            # here we checkout the prefixes with formulas verified only on the suffix phase
            lines_s, lines_t_s, lines_t2_s, lines_t3_s = selectFormulaVerifiedTraces(
                lines, lines_t, lines_t2, lines_t3, formula, prefix_size)
            print("prefix size: " + str(prefix_size))
            print("formulas verifited: " + str(len(lines_s)) + " out of : " +
                  str(len(lines)))
            for line, times, times2, times3 in zip(lines_s, lines_t_s,
                                                   lines_t2_s, lines_t3_s):
                prediction_end_reached = False
                times.append(0)
                cropped_line = ''.join(line[:prefix_size])
                cropped_times = times[:prefix_size]
                cropped_times3 = times3[:prefix_size]
                if len(times2) < prefix_size:
                    continue  # make no prediction for this case, since this case has ended already

                # initialize root of the tree for beam search
                total_predicted_time_initialization = 0
                search_tree_root = MultileafTree(
                    beam_size,
                    encode(cropped_line, cropped_times, cropped_times3, maxlen,
                           chars, char_indices, divisor, divisor2),
                    cropped_line, total_predicted_time_initialization)

                prediction_end_reached = False

                ground_truth = ''.join(line[prefix_size:prefix_size +
                                            predict_size])
                ground_truth_t = times2[prefix_size - 1]
                case_end_time = times2[len(times2) - 1]
                ground_truth_t = case_end_time - ground_truth_t
                predicted = ''

                for i in range(predict_size):
                    # here we will take data from the node in the tree used to prun
                    enc = search_tree_root.data  # encode(cropped_line, cropped_times, cropped_times3)
                    y = model.predict(enc, verbose=0)  # make predictions
                    # split predictions into seperate activity and time predictions
                    y_char = y[0][0]
                    y_t = y[1][0][0]

                    stop_symbol_probability_amplifier_current, \
                        start_of_the_cycle_symbol = amplify(search_tree_root.cropped_line)

                    # cropped_line += prediction
                    if y_t < 0:
                        y_t = 0
                    # TOO not normalizing here seems like a bug
                    cropped_times.append(y_t)

                    ma = False
                    for i in range(beam_size):
                        prediction = getSymbolAmpl(
                            y_char, target_indices_char, target_char_indices,
                            start_of_the_cycle_symbol,
                            stop_symbol_probability_amplifier_current, i)
                        # end of case was just predicted, therefore, stop predicting further into the future
                        if prediction == '!':
                            if verify_formula_as_compliant(
                                    search_tree_root.cropped_line, formula,
                                    prefix_size):
                                one_ahead_pred.append(
                                    search_tree_root.total_predicted_time)
                                one_ahead_gt.append(ground_truth_t)
                                print('! predicted, end case')
                                ma = True
                                break

                            # else:
                            #     prediction_end_reached = True;
                    if ma:
                        break
                    # if the end of prediction was not reached we continue as always, and then function :choose_next_
                    # top_descendant: will earch for future prediction

                    # in not reached, function :choose_next_top_descendant: will backtrack
                    y_t = y_t * divisor3
                    if not prediction_end_reached:
                        cropped_times3.append(cropped_times3[-1] +
                                              timedelta(seconds=y_t))

                        for i in range(beam_size):
                            temp_prediction = getSymbolAmpl(
                                y_char, target_indices_char,
                                target_char_indices, start_of_the_cycle_symbol,
                                stop_symbol_probability_amplifier_current, i)
                            if temp_prediction == '!':
                                continue
                            temp_cropped_line = search_tree_root.cropped_line + temp_prediction

                            # this means that we found the end in one of the alternatives.
                            temp_total_predicted_time = search_tree_root.total_predicted_time + y_t

                            temp_state_data = encode(temp_cropped_line,
                                                     cropped_times,
                                                     cropped_times3, maxlen,
                                                     chars, char_indices,
                                                     divisor, divisor2)
                            search_tree_root.descendants[i] = MultileafTree(
                                beam_size, temp_state_data, temp_cropped_line,
                                temp_total_predicted_time, search_tree_root)

                    search_tree_root = search_tree_root.choose_next_top_descendant(
                    )
                    if prediction_end_reached:
                        prediction_end_reached = False
                    if search_tree_root is None:
                        print(
                            "Cannot find any trace that is compliant with formula given current beam size"
                        )
                        break

                output = []

                if search_tree_root is None:
                    predicted = u""
                    total_predicted_time = 0
                else:
                    predicted = (search_tree_root.cropped_line[prefix_size:])
                    total_predicted_time = search_tree_root.total_predicted_time

                if len(ground_truth) > 0:
                    output.append(prefix_size)
                    output.append(unicode(ground_truth).encode("utf-8"))
                    output.append(unicode(predicted).encode("utf-8"))
                    output.append(
                        1 - distance.nlevenshtein(predicted, ground_truth))
                    dls = 1 - (damerau_levenshtein_distance(
                        unicode(predicted), unicode(ground_truth)) /
                               max(len(predicted), len(ground_truth)))
                    if dls < 0:
                        dls = 0
                    # we encountered problems with Damerau-Levenshtein Similarity on some linux machines where the
                    # default character encoding of the operating system caused it to be negative, this should never
                    # be the case
                    output.append(dls)
                    output.append(1 -
                                  distance.jaccard(predicted, ground_truth))
                    output.append(ground_truth_t)
                    output.append(total_predicted_time)
                    output.append('')
                    output.append(
                        metrics.mean_absolute_error([ground_truth_t],
                                                    [total_predicted_time]))
                    output.append(
                        metrics.median_absolute_error([ground_truth_t],
                                                      [total_predicted_time]))
                    spamwriter.writerow(output)
    print("TIME TO FINISH --- %s seconds ---" % (time.time() - start_time))
        # lines_t2 = lines_t2[13:]
        # lines_t3 = lines_t3[13:]

        for line, times, times2, times3 in izip(lines, lines_t, lines_t2,
                                                lines_t3):
            times.append(0)
            cropped_line = ''.join(line[:prefix_size])
            cropped_times = times[:prefix_size]
            cropped_times3 = times3[:prefix_size]
            if len(times2) < prefix_size:
                continue  # make no prediction for this case, since this case has ended already

            # initialize root of the tree for beam search
            total_predicted_time_initialization = 0
            search_node_root = NodePrediction(
                encode(cropped_line, cropped_times, cropped_times3, maxlen,
                       chars, char_indices, divisor, divisor2), cropped_line,
                total_predicted_time_initialization)

            ground_truth = ''.join(line[prefix_size:prefix_size +
                                        predict_size])
            ground_truth_t = times2[prefix_size - 1]
            case_end_time = times2[len(times2) - 1]
            ground_truth_t = case_end_time - ground_truth_t
            predicted = ''

            queue_next_steps = PriorityQueue()
            queue_next_steps.put(
                (-search_node_root.probability_of, search_node_root))

            queue_next_steps_future = PriorityQueue()
Example #4
0
def runExperiments(logIdentificator, formulaType):
    eventlog, path_to_model_file, beam_size, \
        prefix_size_pred_from, prefix_size_pred_to, formula = activateSettings(logIdentificator, formulaType)
    start_time = time.time()

    lines, lines_t, lines_t2, lines_t3, maxlen, chars, char_indices,divisor, divisor2, \
        divisor3, predict_size,target_indices_char,target_char_indices\
        = prepare_testing_data(eventlog)

    #
    # lines = lines[0:300]
    # lines_t= lines_t[0:300]
    # lines_t2=lines_t2[0:300]
    # lines_t3=lines_t3[0:300]

    #this is the beam stack size, means how many "best" alternatives will be stored
    one_ahead_gt = []
    one_ahead_pred = []

    #find cycles and modify the probability functionality goes here
    stop_symbol_probability_amplifier_current = 1

    # load model, set this to the model generated by train.py
    model = load_model(path_to_model_file)

    class NodePrediction():
        def __init__(self,
                     data,
                     cropped_line,
                     total_predicted_time,
                     probability_of=0):
            self.data = data
            self.cropped_line = cropped_line
            self.total_predicted_time = total_predicted_time
            self.probability_of = probability_of

    # make predictions
    with open(
            'output_files/results/' + formulaType +
            '/suffix_and_remaining_time3_%s' % eventlog, 'wb') as csvfile:
        spamwriter = csv.writer(csvfile,
                                delimiter=',',
                                quotechar='|',
                                quoting=csv.QUOTE_MINIMAL)
        spamwriter.writerow([
            "Prefix length", "Groud truth", "Predicted", "Levenshtein",
            "Damerau", "Jaccard", "Ground truth times", "Predicted times",
            "RMSE", "MAE", "Median AE"
        ])
        for prefix_size in range(prefix_size_pred_from, prefix_size_pred_to):
            print(prefix_size)

            # lines = lines[13:]
            # lines_t = lines_t[13:]
            # lines_t2 = lines_t2[13:]
            # lines_t3 = lines_t3[13:]
            lines_s, lines_t_s, lines_t2_s, lines_t3_s = selectFormulaVerifiedTraces(
                lines, lines_t, lines_t2, lines_t3, formula, prefix_size)
            print("prefix size: " + str(prefix_size))
            print("formulas verifited: " + str(len(lines_s)) + " out of : " +
                  str(len(lines)))
            counterr = 0
            for line, times, times2, times3 in izip(lines_s, lines_t_s,
                                                    lines_t2_s, lines_t3_s):
                times.append(0)
                cropped_line = ''.join(line[:prefix_size])
                cropped_times = times[:prefix_size]
                cropped_times3 = times3[:prefix_size]
                if len(times2) < prefix_size:
                    continue  # make no prediction for this case, since this case has ended already

                # initialize root of the tree for beam search
                total_predicted_time_initialization = 0
                search_node_root = NodePrediction(
                    encode(cropped_line, cropped_times, cropped_times3, maxlen,
                           chars, char_indices, divisor, divisor2),
                    cropped_line, total_predicted_time_initialization)

                ground_truth = ''.join(line[prefix_size:prefix_size +
                                            predict_size])
                ground_truth_t = times2[prefix_size - 1]
                case_end_time = times2[len(times2) - 1]
                ground_truth_t = case_end_time - ground_truth_t
                predicted = ''

                queue_next_steps = PriorityQueue()
                queue_next_steps.put(
                    (-search_node_root.probability_of, search_node_root))

                queue_next_steps_future = PriorityQueue()
                start_of_the_cycle_symbol = " "
                found_sattisfying_constraint = False

                current_beam_size = beam_size

                for i in range(predict_size):
                    for k in range(current_beam_size):
                        if queue_next_steps.empty():
                            break

                        _, current_prediction_premis = queue_next_steps.get()

                        if not found_sattisfying_constraint:
                            if verify_formula_as_compliant(
                                    current_prediction_premis.cropped_line,
                                    formula, prefix_size):
                                #the formula verified and we can just finish the predictions
                                #beam size is 1 because predict only sequence of events
                                current_beam_size = 1
                                #overwrite new queue
                                queue_next_steps_future = PriorityQueue()
                                found_sattisfying_constraint = True

                        enc = current_prediction_premis.data
                        temp_cropped_line = current_prediction_premis.cropped_line
                        y = model.predict(enc, verbose=0)  # make predictions
                        # split predictions into seperate activity and time predictions
                        y_char = y[0][0]
                        y_t = y[1][0][0]

                        if y_t < 0:
                            y_t = 0
                        cropped_times.append(y_t)

                        if not i == 0:
                            stop_symbol_probability_amplifier_current, start_of_the_cycle_symbol = amplify(
                                temp_cropped_line)

                        #in not reached, function :choose_next_top_descendant: will backtrack
                        y_t = y_t * divisor3
                        cropped_times3.append(cropped_times3[-1] +
                                              timedelta(seconds=y_t))

                        for j in range(current_beam_size):
                            temp_prediction = getSymbolAmpl(
                                y_char, target_indices_char,
                                target_char_indices, start_of_the_cycle_symbol,
                                stop_symbol_probability_amplifier_current, j)

                            if temp_prediction == '!':  # end of case was just predicted, therefore, stop predicting further into the future
                                if verify_formula_as_compliant(
                                        temp_cropped_line, formula,
                                        prefix_size):
                                    one_ahead_pred.append(
                                        current_prediction_premis.
                                        total_predicted_time)
                                    one_ahead_gt.append(ground_truth_t)
                                    stop_symbol_probability_amplifier_current = 1
                                    print('! predicted, end case')
                                    queue_next_steps = PriorityQueue()
                                    break
                                else:
                                    continue

                            temp_cropped_line = current_prediction_premis.cropped_line + temp_prediction
                            temp_total_predicted_time = current_prediction_premis.total_predicted_time + y_t
                            temp_state_data = encode(temp_cropped_line,
                                                     cropped_times,
                                                     cropped_times3, maxlen,
                                                     chars, char_indices,
                                                     divisor, divisor2)
                            probability_this = np.sort(y_char)[len(y_char) -
                                                               1 - j]

                            temp = NodePrediction(
                                temp_state_data, temp_cropped_line,
                                temp_total_predicted_time,
                                current_prediction_premis.probability_of +
                                np.log(probability_this))
                            queue_next_steps_future.put(
                                (-temp.probability_of, temp))
                            # print str(counterr) + ' ' + str(i) + ' ' + str(k) \
                            #       + ' ' + str(j) + ' ' + temp_cropped_line[prefix_size:]\
                            #       + "     " + str(temp.probability_of)
                    queue_next_steps = queue_next_steps_future
                    queue_next_steps_future = PriorityQueue()

                counterr += 1

                if current_prediction_premis == None:
                    print "Cannot find any trace that is compliant with formula given current beam size"
                    break

                output = []

                if current_prediction_premis == None:
                    predicted = u""
                    total_predicted_time = 0
                else:
                    predicted = (
                        current_prediction_premis.cropped_line[prefix_size:])
                    total_predicted_time = current_prediction_premis.total_predicted_time

                if len(ground_truth) > 0:
                    output.append(prefix_size)
                    output.append(unicode(ground_truth).encode("utf-8"))
                    output.append(unicode(predicted).encode("utf-8"))
                    output.append(
                        1 - distance.nlevenshtein(predicted, ground_truth))
                    dls = 1 - (damerau_levenshtein_distance(
                        unicode(predicted), unicode(ground_truth)) /
                               max(len(predicted), len(ground_truth)))
                    if dls < 0:
                        dls = 0  # we encountered problems with Damerau-Levenshtein Similarity on some linux machines where the default character encoding of the operating system caused it to be negative, this should never be the case
                    output.append(dls)
                    output.append(1 -
                                  distance.jaccard(predicted, ground_truth))
                    output.append(ground_truth_t)
                    output.append(total_predicted_time)
                    output.append('')
                    output.append(
                        metrics.mean_absolute_error([ground_truth_t],
                                                    [total_predicted_time]))
                    output.append(
                        metrics.median_absolute_error([ground_truth_t],
                                                      [total_predicted_time]))
                    spamwriter.writerow(output)

    print("TIME TO FINISH --- %s seconds ---" % (time.time() - start_time))