def test_layer_neunet_builder_fail_not_enough_layers(self): l_nodes = [1] layer_types = ["relu"] with pytest.raises(NameError): LayerNeuNetBuilder().set_weights_and_bias(l_nodes).set_layers( layer_types).build()
def test_set_weitghts_and_bias(self): l_nodes = [1, 2, 3, 4] test_layerbuilder = LayerNeuNetBuilder().set_weights_and_bias(l_nodes) assert test_layerbuilder.net.weights is not None assert test_layerbuilder.net.bias is not None assert test_layerbuilder.net.l_nodes is not None assert test_layerbuilder.net.layers is not None
def _test_layernet(l_nodes=[10, 7, 5, 3], layer_types="relu", cost_type="exponentialcuadratic"): if isinstance(layer_types, list): layer_types_list = layer_types else: layer_types_list = [layer_types] * len(l_nodes) test_layernet = LayerNeuNetBuilder() \ .set_layers(layer_types_list) \ .set_cost(cost_type) \ .set_weights_and_bias(l_nodes) \ .build() return test_layernet
def test_build_success(self): l_nodes = [1, 2, 3, 4] cost_type = "cuadratic" layer_types = ["relu"] * len(l_nodes) test_layernet = LayerNeuNetBuilder(). \ set_weights_and_bias(l_nodes). \ set_layers(layer_types). \ set_cost(cost_type). \ build() assert test_layernet.weights is not None assert test_layernet.bias is not None assert test_layernet.l_nodes is not None assert test_layernet.layers is not None assert test_layernet.layer_types is not None assert test_layernet.cost_layer is not None
def test_layernet_constructor_not_defined(self): with pytest.raises(NameError): LayerNeuNetBuilder().build()
def test_set_exponentialcuadratic_cost(self): cost_type = "exponentialcuadratic" test_layernetbuilder = LayerNeuNetBuilder().set_cost(cost_type) assert test_layernetbuilder.net.cost_layer is not None
def test_set_layers_success(self): layer_types = ["relu", "sigmoid"] test_layerbuilder = LayerNeuNetBuilder().set_layers(layer_types) assert test_layerbuilder.net.layer_types is not None