def main(saved_weights_path): prepare_log_dir() train_data, train_labels = load_svhn_data("train", "full") valid_data, valid_labels = load_svhn_data("valid", "full") test_data, test_labels = load_svhn_data("test", "full") print("TrainData", train_data.shape) print("Valid Data", valid_data.shape) print("Test Data", test_data.shape) train_size = len(train_labels) train_regressor(train_data, train_labels, valid_data, valid_labels, test_data, test_labels, train_size, saved_weights_path)
def main(saved_weights_path): prepare_log_dir() train_data, train_labels = load_svhn_data("train", "cropped") valid_data, valid_labels = load_svhn_data("valid", "cropped") test_data, test_labels = load_svhn_data("test", "cropped") print("Training", train_data.shape) print("Valid", valid_data.shape) print("Test", test_data.shape) train_size = train_labels.shape[0] #saved_weights_path = None train_classification(train_data, train_labels, valid_data, valid_labels, test_data, test_labels, train_size, saved_weights_path)
def main(saved_weights_path): prepare_log_dir() train_data, train_labels = load_svhn_data("train", "cropped") valid_data, valid_labels = load_svhn_data("valid", "cropped") test_data, test_labels = load_svhn_data("test", "cropped") print("Training", train_data.shape) print("Valid", valid_data.shape) print("Test", test_data.shape) train_size = train_labels.shape[0] saved_weights_path = None train_classification(train_data, train_labels, valid_data, valid_labels, test_data, test_labels, train_size, saved_weights_path)
import sys import os import numpy as np import tensorflow as tf import PIL.Image as Image import matplotlib.pyplot as plt import cv2 as cv from svhn_model import regression_head from svhn_data import load_svhn_data import time test_dataset, test_labels = load_svhn_data("test", "full") WEIGHTS_FILE = "regression.ckpt" # tf.reset_default_graph() def optimistic_restore(session, save_file): reader = tf.train.NewCheckpointReader(save_file) saved_shapes = reader.get_variable_to_shape_map() var_names = sorted([(var.name, var.name.split(':')[0]) for var in tf.global_variables() if var.name.split(':')[0] in saved_shapes]) restore_vars = [] name2var = dict( zip(map(lambda x: x.name.split(':')[0], tf.global_variables()), tf.global_variables())) with tf.variable_scope('', reuse=True): for var_name, saved_var_name in var_names:
def main(saved_weights_path): prepare_log_dir() train_data, train_labels = load_svhn_data("train", "full") valid_data, valid_labels = load_svhn_data("valid", "full") test_data, test_labels = load_svhn_data("test", "full") print("\nTrain data", train_data.shape) print("Valid data", valid_data.shape) print("Test data", test_data.shape) print("Train labels", train_labels.shape) print("Valid labels", valid_labels.shape) print("Test labels", test_labels.shape) train_size = len(train_labels); print('train_size',train_size) valid_size = len(valid_labels); print('valid_size',valid_size) test_size = len(test_labels); print('test_size',test_size,'\n') data_size = [train_size , valid_size , test_size] print('1. starting the grouping data into subsets process.') # Grouping the data into subsets, each subset has a certain num of digits in every image # data_groups (k) are as follows: k=0 -> train k=1 -> valid k=2 -> test # For each data/label group, subsets have a set number of digits (a number: 1 to 5) # create list templates data_list_of_lists_tvt = [ [ [],[],[],[],[],[] ], [ [],[],[],[],[],[] ] , [ [],[],[],[],[],[] ] ] num_digits_list = [[0,0,0,0,0,0] , [0,0,0,0,0,0] , [0,0,0,0,0,0]] print('2. created list templates') data_set = [train_data, valid_data, test_data] labels_set = [train_labels, valid_labels, test_labels] # Forming the list of lists & counting the number of images with x digits, for data group (train / valid / test) # data_groups: k=0 -> train k=1 -> valid k=2 -> test for data_group in range(3): labels = labels_set[data_group] for i in range(data_size[data_group]): for num_digits_in_data_subset in range(6): data_num_digits = labels[i, 0] if data_num_digits == (num_digits_in_data_subset): data_list_of_lists_tvt[data_group][num_digits_in_data_subset].append(i) num_digits_list[data_group][num_digits_in_data_subset] += 1 labels = None if TEST_FLAG: print('np.array(num_digits_list).shape',np.array(num_digits_list).shape) print('np.array(num_digits_list[0]).shape',np.array(num_digits_list[0]).shape) print('np.array(num_digits_list[0][1]).shape',np.array(num_digits_list[0][1]).shape,'If this shape is (), this reflects that this object is a scalar value.') print('\n3. created populated data/labels lists') # print the count of number of images in each group / subset. each subset reflects num_digits print('\nThe following are counts of number of images for each group and (num_digits) subset. Groups are as follows: k=0 -> train k=1 -> valid k=2 -> test') for data_group in range(3): for num_digits_in_data_subset in range(6): print('Data group:',data_group,'\tNum of digits_',num_digits_in_data_subset,' = \t',num_digits_list[data_group][num_digits_in_data_subset]) # create lists of zero arrays, for each group and each subset (for both data and labels) data_group_with_digits = [[0,0,0,0,0,0] , [0,0,0,0,0,0] , [0,0,0,0,0,0]] label_group_with_digits = [[0,0,0,0,0,0] , [0,0,0,0,0,0] , [0,0,0,0,0,0]] for data_group in range(3): for num_digits_in_data_subset in range(6): data_group_with_digits[data_group][num_digits_in_data_subset] = np.zeros(shape=(num_digits_list[data_group][num_digits_in_data_subset] , IMG_HEIGHT , IMG_WIDTH , NUM_CHANNELS), dtype=np.float32) #shape_data = [train_data.shape , valid_data.shape , test_data.shape] label_group_with_digits[data_group][num_digits_in_data_subset] =np.zeros(shape=(num_digits_list[data_group][num_digits_in_data_subset],6) , dtype=np.int32) if data_group ==0: print('num_digits_list[data_group][num_digits_in_data_subset]',num_digits_list[data_group][num_digits_in_data_subset]) #if data_group == 0: # if num_digits_in_data_subset == 4: # print('num_digits_list[data_group][num_digits_in_data_subset]',num_digits_list[data_group][num_digits_in_data_subset]) # print('label_group_with_digits[data_group][num_digits_in_data_subset]',label_group_with_digits[data_group][num_digits_in_data_subset]) print('\n4. created lists of zero arrays\n') if TEST_FLAG: print('data_group_with_digits.shape',np.array(data_group_with_digits).shape) print('data_group_with_digits[0].shape',np.array(data_group_with_digits[0]).shape) print('data_group_with_digits[0][1].shape',np.array(data_group_with_digits[0][1]).shape) print('np.array(num_digits_list).shape',np.array(num_digits_list).shape) print('np.array(num_digits_list[0]).shape',np.array(num_digits_list[0]).shape) print('np.array(num_digits_list[0][1]).shape',np.array(num_digits_list[0][1]).shape) print('np.array(label_group_with_digits).shape',np.array(label_group_with_digits).shape) print('np.array(label_group_with_digits[0])',np.array(label_group_with_digits[0]).shape) print('np.array(label_group_with_digits[0][1])',np.array(label_group_with_digits[0][1] ).shape) #populate the arrays with data/labels for data_group in range(3): labels = labels_set[data_group] data = data_set[data_group] for num_digits_in_data_subset in range(6): if TEST_FLAG: print('data_group',data_group,'num_digits_in_data_subset',num_digits_in_data_subset) data_group_with_digits[data_group][num_digits_in_data_subset] = [data[i,:,:,:] for i in data_list_of_lists_tvt[data_group][num_digits_in_data_subset] if num_digits_list[data_group][num_digits_in_data_subset] != 0 ] label_group_with_digits[data_group][num_digits_in_data_subset] = [ labels[i,:] for i in data_list_of_lists_tvt[data_group][num_digits_in_data_subset] if num_digits_list[data_group][num_digits_in_data_subset] != 0 ] print('\n5. populated the arrays with data/labels\n') if TEST_FLAG: print('data_group_with_digits.shape',np.array(data_group_with_digits).shape) print('data_group_with_digits[0].shape',np.array(data_group_with_digits[0]).shape) print('data_group_with_digits[0][0].shape',np.array(data_group_with_digits[0][0]).shape) print('data_group_with_digits[0][1].shape',np.array(data_group_with_digits[0][1]).shape) #print('data_group_with_digits[0][1].shape',np.array(data_group_with_digits[0][1]).shape) print('np.array(label_group_with_digits).shape',np.array(label_group_with_digits).shape) print('np.array(label_group_with_digits[0]).shape',np.array(label_group_with_digits[0]).shape) print('np.array(label_group_with_digits[0][0]).shape',np.array(label_group_with_digits[0][0]).shape) print('np.array(label_group_with_digits[0][1]).shape',np.array(label_group_with_digits[0][1]).shape) """ TRAIN THE REGRESSOR""" # define num_digits_in_data_subset , such that we can train the regressor , for a given num_digits_in_data_subset # num_digits_in_data_subset is input into train_regressor function # training => data_group == 0 for num_digits_in_data_subset in range(6): data_train = np.array( data_group_with_digits[0][num_digits_in_data_subset] ) labels_train = np.array( label_group_with_digits[0][num_digits_in_data_subset] ) data_valid = np.array( data_group_with_digits[1][num_digits_in_data_subset] ) labels_valid = np.array( label_group_with_digits[1][num_digits_in_data_subset] ) data_test = np.array( data_group_with_digits[2][num_digits_in_data_subset] ) labels_test = np.array( label_group_with_digits[2][num_digits_in_data_subset] ) data_shape = np.array(data_train).shape # data_shape[0] is the training data length if data_shape[0] > 0: # we check there is some data, for a given num_of_digits, so that we input some data (vs. NULL) into regression model during training if num_digits_in_data_subset > 0: # we don't need to train the model to predict that there are no digits in an image (in this use-case) print('num_digits_in_data_subset',num_digits_in_data_subset,'data_shape[0]',data_shape[0]) train_regressor(data_train, labels_train, data_valid, labels_valid, data_test, labels_test, train_size=data_shape[0], saved_weights_path=saved_weights_path, num_digits_in_data_subset=num_digits_in_data_subset)
import sys import os import numpy as np import tensorflow as tf import PIL.Image as Image import matplotlib.pyplot as plt from svhn_model import regression_head from svhn_data import load_svhn_data import time test_dataset, test_labels = load_svhn_data("test", "full") WEIGHTS_FILE = "regression.ckpt" def prediction_to_string(pred_array): pred_str = "" for i in range(len(pred_array)): if pred_array[i] != 10: pred_str += str(pred_array[i]) else: return pred_str return pred_str def detect(img_path, saved_model_weights): sample_img = Image.open(img_path) plt.imshow(sample_img) plt.show() pix = np.array(sample_img)
# start = cv2.getTickCount() score = anogan.compute_anomaly_score(model, test_imgs[i].reshape(1, 32, 32, 3), iterations=500, d=None) # time = (cv2.getTickCount() - start) / cv2.getTickFrequency() * 1000 print('%d label, %d : done' % (1, i), '%.2f' % score) score_for_2.append(score) score_for_2 = np.sort(score_for_2)[::-1] print(score_for_2) import pickle pickle.dump(score_for_2, open("cifar100_score.pickle", "wb")) ### compute outlier scores on SVHN import svhn_data (X_train, y_train), (X_test, y_test) = svhn_data.load_svhn_data() X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_test = (X_test.astype(np.float32) - 127.5) / 127.5 # X_train = X_train[:,:,:,None] # X_test = X_test[:,:,:,None] perm_test = np.random.permutation(len(X_train)) X_train = X_train[perm_test] test_imgs = X_train[0:200] score_for_2 = [] # test_img = np.random.uniform(-1,1, (28,28,1)) model = anogan.anomaly_detector(g=None, d=None) for i in range(np.shape(test_imgs)[0]): # start = cv2.getTickCount() score = anogan.compute_anomaly_score(model, test_imgs[i].reshape(1, 32, 32, 3),