print(__doc__) ############################################################################### # Building SVC from database FACE_DIM = (50, 50) # h = 50, w = 50 # Load training data from face_profiles/ face_profile_data, face_profile_name_index, face_profile_names = ut.load_training_data( "../face_profiles/") print "\n", face_profile_name_index.shape[0], " samples from ", len( face_profile_names), " people are loaded" # Build the classifier clf, pca = svm.build_SVC(face_profile_data, face_profile_name_index, FACE_DIM) ############################################################################### # Facial Recognition In Live Tracking DISPLAY_FACE_DIM = (200, 200) # the displayed video stream screen dimention SKIP_FRAME = 2 # the fixed skip frame frame_skip_rate = 0 # skip SKIP_FRAME frames every other frame SCALE_FACTOR = 4 # used to resize the captured frame for face detection for faster processing speed face_cascade = cv2.CascadeClassifier( "../classifier/haarcascade_frontalface_default.xml" ) #create a cascade classifier sideFace_cascade = cv2.CascadeClassifier( '../classifier/haarcascade_profileface.xml') if len(sys.argv) == 2:
print(__doc__) ############################################################################### # Building SVC from database FACE_DIM = (50,50) # h = 50, w = 50 # Load training data from face_profiles/ face_profile_data, face_profile_name_index, face_profile_names = ut.load_training_data("../face_profiles/") print "\n", face_profile_name_index.shape[0], " samples from ", len(face_profile_names), " people are loaded" # Build the classifier clf, pca = svm.build_SVC(face_profile_data, face_profile_name_index, FACE_DIM) ############################################################################### # Facial Recognition In Live Tracking DISPLAY_FACE_DIM = (200, 200) # the displayed video stream screen dimention SKIP_FRAME = 2 # the fixed skip frame frame_skip_rate = 0 # skip SKIP_FRAME frames every other frame SCALE_FACTOR = 4 # used to resize the captured frame for face detection for faster processing speed face_cascade = cv2.CascadeClassifier("../classifier/haarcascade_frontalface_default.xml") #create a cascade classifier sideFace_cascade = cv2.CascadeClassifier('../classifier/haarcascade_profileface.xml') if len(sys.argv) == 2: SCALE_FACTOR = float(sys.argv[1])