def __init__(self,pinakasA,mywidth,classifier_code): self.code=classifier_code if self.code=="svm": classifier=SVMAnomalyClassifier(pinakasA,mywidth) elif self.code=="gmm": classifier=GMMAnomalyClassifier(pinakasA,mywidth) else: raiseException("Unrecognized Name") #if isinstance(classifier,SVMAnomalyClassifier): #print "einai SVMAnomalyClassifier" #if isinstance(classifier,AnomalyClassifier): #print "einai AnomalyClassifier" self.width=mywidth classifier.trainWithDataset(pinakasA,self.width) trained_pickled = open('/home/mike/svn/nasia/trunk/philosophers/src/anomaly_detection/scripts/results/trained.pkl', 'wb') #apo8ikevei to trained montelo sto data.pkl pickle.dump(classifier, trained_pickled, -1) sys.exit()
def __init__(self,pinakasA,mywidth,classifier_code): self.code=classifier_code if self.code=="svm": classifier=SVMAnomalyClassifier(pinakasA,mywidth) elif self.code=="gmm": classifier=GMMAnomalyClassifier(pinakasA,mywidth) else: raiseException("Unrecognized Name") if isinstance(classifier,SVMAnomalyClassifier): print "einai SVMAnomalyClassifier" if isinstance(classifier,AnomalyClassifier): print "einai AnomalyClassifier" self.width=mywidth classifier.trainWithDataset(pinakasA,self.width) trained_pickled = open('trained.pkl', 'wb') #apo8ikevei to trained montelo sto data.pkl pickle.dump(classifier, trained_pickled, -1) sys.exit()