Example #1
0
 def from_dict(self, query_graph_dict):
     query_graph = QueryGraph()
     query_graph.nodes = []
     query_graph.edges = []
     if "nodes" in query_graph_dict:
         for node in query_graph_dict["nodes"]:
             qnode = QNode().from_dict(node)
             query_graph.nodes.append(qnode)
     if "edges" in query_graph_dict:
         for edge in query_graph_dict["edges"]:
             qedge = QEdge().from_dict(edge)
             query_graph.edges.append(qedge)
     return query_graph
    def _decorate_existing_edges(self):
        # This function decorates all existing edges in the knowledge graph with ICEES data, stored in EdgeAttributes
        knowledge_graph = self.message.knowledge_graph
        log = self.response

        # Query ICEES for each edge in the knowledge graph that ICEES can provide data on (use known curies)
        num_edges_obtained_icees_data_for = 0
        edges_by_node_pair = self._get_edges_by_node_pair(
            knowledge_graph)  # Don't duplicate effort for parallel edges
        for node_pair_key, node_pair_edges in edges_by_node_pair.items():
            source_id = node_pair_edges[0].source_id
            target_id = node_pair_edges[0].target_id
            accepted_source_synonyms = self._get_accepted_synonyms(source_id)
            accepted_target_synonyms = self._get_accepted_synonyms(target_id)
            if accepted_source_synonyms and accepted_target_synonyms:
                # Query ICEES for each possible combination of accepted source/target synonyms
                for source_curie_to_try, target_curie_to_try in itertools.product(
                        accepted_source_synonyms, accepted_target_synonyms):
                    qedge = QEdge(id=f"icees_e00",
                                  source_id=source_curie_to_try,
                                  target_id=target_curie_to_try)
                    log.debug(
                        f"Sending query to ICEES+ for {source_curie_to_try}--{target_curie_to_try}"
                    )
                    p_value = self._get_icees_p_value_for_edge(qedge, log)
                    if p_value is not None:
                        num_edges_obtained_icees_data_for += len(
                            node_pair_edges)
                        new_edge_attribute = self._create_icees_edge_attribute(
                            p_value)
                        # Add the data as new EdgeAttributes on the existing edges with this source/target ID
                        for edge in node_pair_edges:
                            if not edge.edge_attributes:
                                edge.edge_attributes = []
                            edge.edge_attributes.append(new_edge_attribute)
                        # Don't worry about checking remaining synonym combos if we got results
                        break

        if num_edges_obtained_icees_data_for:
            log.info(
                f"Overlayed {num_edges_obtained_icees_data_for} edges with exposures data from ICEES+"
            )
        else:
            log.warning(
                f"Could not find ICEES+ exposures data for any edges in the KG"
            )

        return self.response
Example #3
0
    def predict_drug_treats_disease(self):
        """
        Iterate over all the edges in the knowledge graph, add the drug-disease treatment probability for appropriate edges
        on the edge_attributes
        :return: response
        """
        parameters = self.parameters
        self.response.debug(f"Computing drug disease treatment probability based on a machine learning model")
        self.response.info(f"Computing drug disease treatment probability based on a machine learning model: See [this publication](https://doi.org/10.1101/765305) for more details about how this is accomplished.")

        attribute_name = "probability_treats"
        attribute_type = "EDAM:data_0951"
        value = 0  # this will be the default value. If the model returns 0, or the default is there, don't include that edge
        url = "https://doi.org/10.1101/765305"

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        if "drug" in node.type or "chemical_substance" in node.type:  # this is now NOT checked by ARAX_overlay
                            source_curies_to_decorate.add(node.id)
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        if "disease" in node.type or "phenotypic_feature" in node.type:  # this is now NOT checked by ARAX_overlay
                            target_curies_to_decorate.add(node.id)

            added_flag = False  # check to see if any edges where added
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute

            for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate):
                # create the edge attribute if it can be
                # loop over all equivalent curies and take the highest probability

                max_probability = 0
                converted_source_curie = self.convert_to_trained_curies(source_curie)
                converted_target_curie = self.convert_to_trained_curies(target_curie)
                if converted_source_curie is None or converted_target_curie is None:
                    continue
                res = list(itertools.product(converted_source_curie, converted_target_curie))
                if len(res) != 0:
                    all_probabilities = self.pred.prob_all(res)
                    if isinstance(all_probabilities, list):
                        max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                value = max_probability

                #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                #    value = probability[0]
                edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url)  # populate the edge attribute
                if edge_attribute and value != 0:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "probably_treats"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by, defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                edge_type = "probably_treats"
                relation = parameters['virtual_relation_label']
                qedge_id = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation, type=edge_type, relation=relation,
                               source_id=parameters['source_qnode_id'], target_id=parameters['target_qnode_id'])  # TODO: ok to make the id and type the same thing?
                self.message.query_graph.edges.append(q_edge)
            return self.response

        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                # map curies to types
                curie_to_type = dict()
                for node in self.message.knowledge_graph.nodes:
                    curie_to_type[node.id] = node.type
                # then iterate over the edges and decorate if appropriate
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = []  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_types = curie_to_type[source_curie]
                    target_types = curie_to_type[target_curie]
                    if (("drug" in source_types) or ("chemical_substance" in source_types)) and (("disease" in target_types) or ("phenotypic_feature" in target_types)):
                        temp_value = 0
                        # loop over all pairs of equivalent curies and take the highest probability

                        max_probability = 0
                        converted_source_curie = self.convert_to_trained_curies(source_curie)
                        converted_target_curie = self.convert_to_trained_curies(target_curie)
                        if converted_source_curie is None or converted_target_curie is None:
                            continue
                        res = list(itertools.product(converted_source_curie, converted_target_curie))
                        if len(res) != 0:
                            all_probabilities = self.pred.prob_all(res)
                            if isinstance(all_probabilities, list):
                                max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                        value = max_probability

                        #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                        #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                        #    value = probability[0]
                    elif (("drug" in target_types) or ("chemical_substance" in target_types)) and (("disease" in source_types) or ("phenotypic_feature" in source_types)):
                        #probability = self.pred.prob_single('ChEMBL:' + target_curie[22:], source_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                        #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                        #    value = probability[0]

                        max_probability = 0
                        converted_source_curie = self.convert_to_trained_curies(source_curie)
                        converted_target_curie = self.convert_to_trained_curies(target_curie)
                        if converted_source_curie is None or converted_target_curie is None:
                            continue
                        res = list(itertools.product(converted_target_curie, converted_source_curie))
                        if len(res) != 0:
                            all_probabilities = self.pred.prob_all(res)
                            if isinstance(all_probabilities, list):
                                max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                        value = max_probability

                    else:
                        continue
                    if value != 0:
                        edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url)  # populate the attribute
                        edge.edge_attributes.append(edge_attribute)  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(f"Something went wrong adding the drug disease treatment probability")
            else:
                self.response.info(f"Drug disease treatment probability successfully added to edges")

            return self.response
    def add_virtual_edge(self, name="", default=0.):
        """
        Generic function to add a virtual edge to the KG an QG
        :name: name of the functionality of the KP to use
        """
        parameters = self.parameters
        source_curies_to_decorate = set()
        target_curies_to_decorate = set()
        curies_to_names = dict(
        )  # FIXME: Super hacky way to get around the fact that COHD can't map CHEMBL drugs
        # identify the nodes that we should be adding virtual edges for
        for node in self.message.knowledge_graph.nodes:
            if hasattr(node, 'qnode_ids'):
                if parameters['source_qnode_id'] in node.qnode_ids:
                    source_curies_to_decorate.add(node.id)
                    curies_to_names[
                        node.
                        id] = node.name  # FIXME: Super hacky way to get around the fact that COHD can't map CHEMBL drugs
                if parameters['target_qnode_id'] in node.qnode_ids:
                    target_curies_to_decorate.add(node.id)
                    curies_to_names[
                        node.
                        id] = node.name  # FIXME: Super hacky way to get around the fact that COHD can't map CHEMBL drugs
        added_flag = False  # check to see if any edges where added
        # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute
        for (source_curie,
             target_curie) in itertools.product(source_curies_to_decorate,
                                                target_curies_to_decorate):
            # create the edge attribute if it can be
            edge_attribute = self.make_edge_attribute_from_curies(
                source_curie,
                target_curie,
                source_name=curies_to_names[source_curie],
                target_name=curies_to_names[target_curie],
                default=default,
                name=name)
            if edge_attribute:
                added_flag = True
                # make the edge, add the attribute

                # edge properties
                now = datetime.now()
                edge_type = f"has_{name}_with"
                qedge_ids = [parameters['virtual_relation_label']]
                relation = parameters['virtual_relation_label']
                is_defined_by = "ARAX"
                defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                provided_by = "ARAX"
                confidence = None
                weight = None  # TODO: could make the actual value of the attribute
                source_id = source_curie
                target_id = target_curie

                # now actually add the virtual edges in
                id = f"{relation}_{self.global_iter}"
                self.global_iter += 1
                edge = Edge(id=id,
                            type=edge_type,
                            relation=relation,
                            source_id=source_id,
                            target_id=target_id,
                            is_defined_by=is_defined_by,
                            defined_datetime=defined_datetime,
                            provided_by=provided_by,
                            confidence=confidence,
                            weight=weight,
                            edge_attributes=[edge_attribute],
                            qedge_ids=qedge_ids)
                self.message.knowledge_graph.edges.append(edge)

        # Now add a q_edge the query_graph since I've added an extra edge to the KG
        if added_flag:
            edge_type = f"has_{name}_with"
            relation = parameters['virtual_relation_label']
            qedge_ids = [parameters['virtual_relation_label']]
            q_edge = QEdge(
                id=relation,
                type=edge_type,
                relation=relation,
                source_id=parameters['source_qnode_id'],
                target_id=parameters['target_qnode_id']
            )  # TODO: ok to make the id and type the same thing?
            self.message.query_graph.edges.append(q_edge)
Example #5
0
    def fisher_exact_test(self):
        """
        Peform the fisher's exact test to expand or decorate the knowledge graph
        :return: response
        """

        self.response.info(
            f"Performing Fisher's Exact Test to add p-value to edge attribute of virtual edge"
        )

        # check the input parameters
        if 'source_qnode_id' not in self.parameters:
            self.response.error(
                f"The argument 'source_qnode_id' is required for fisher_exact_test function"
            )
            return self.response
        else:
            source_qnode_id = self.parameters['source_qnode_id']
        if 'virtual_relation_label' not in self.parameters:
            self.response.error(
                f"The argument 'virtual_relation_label' is required for fisher_exact_test function"
            )
            return self.response
        else:
            virtual_relation_label = str(
                self.parameters['virtual_relation_label'])
        if 'target_qnode_id' not in self.parameters:
            self.response.error(
                f"The argument 'target_qnode_id' is required for fisher_exact_test function"
            )
            return self.response
        else:
            target_qnode_id = self.parameters['target_qnode_id']
        rel_edge_id = self.parameters[
            'rel_edge_id'] if 'rel_edge_id' in self.parameters else None
        top_n = int(
            self.parameters['top_n']) if 'top_n' in self.parameters else None
        cutoff = float(
            self.parameters['cutoff']) if 'cutoff' in self.parameters else None

        # initialize some variables
        nodes_info = {}
        edge_expand_kp = []
        source_node_list = []
        target_node_dict = {}
        size_of_target = {}
        source_node_exist = False
        target_node_exist = False
        query_edge_id = set()
        rel_edge_type = set()
        source_node_type = None
        target_node_type = None

        ## Check if source_qnode_id and target_qnode_id are in the Query Graph
        try:
            if len(self.message.query_graph.nodes) != 0:
                for node in self.message.query_graph.nodes:
                    if node.id == source_qnode_id:
                        source_node_exist = True
                        source_node_type = node.type
                    elif node.id == target_qnode_id:
                        target_node_exist = True
                        target_node_type = node.type
                    else:
                        pass
            else:
                self.response.error(f"There is no query node in QG")
                return self.response
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(tb, error_code=error_type.__name__)
            self.response.error(
                f"Something went wrong with retrieving nodes in message QG")
            return self.response

        if source_node_exist:
            if target_node_exist:
                pass
            else:
                self.response.error(
                    f"No query node with target qnode id {target_qnode_id} detected in QG for Fisher's Exact Test"
                )
                return self.response
        else:
            self.response.error(
                f"No query node with source qnode id {source_qnode_id} detected in QG for Fisher's Exact Test"
            )
            return self.response

        ## Check if there is a query edge connected to both source_qnode_id and target_qnode_id in the Query Graph
        try:
            if len(self.message.query_graph.edges) != 0:
                for edge in self.message.query_graph.edges:
                    if edge.source_id == source_qnode_id and edge.target_id == target_qnode_id and edge.relation == None:
                        query_edge_id.update(
                            [edge.id])  # only actual query edge is added
                    elif edge.source_id == target_qnode_id and edge.target_id == source_qnode_id and edge.relation == None:
                        query_edge_id.update(
                            [edge.id])  # only actual query edge is added
                    else:
                        continue
            else:
                self.response.error(f"There is no query edge in Query Graph")
                return self.response
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(tb, error_code=error_type.__name__)
            self.response.error(
                f"Something went wrong with retrieving edges in message QG")
            return self.response

        if len(query_edge_id) != 0:
            if rel_edge_id:
                if rel_edge_id in query_edge_id:
                    pass
                else:
                    self.response.error(
                        f"No query edge with qedge id {rel_edge_id} connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id} detected in QG for Fisher's Exact Test"
                    )
                    return self.response
            else:
                pass
        else:
            self.response.error(
                f"No query edge connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id} detected in QG for Fisher's Exact Test"
            )
            return self.response

        ## loop over all nodes in KG and collect their node information
        try:
            count = 0
            for node in self.message.knowledge_graph.nodes:
                nodes_info[node.id] = {
                    'count': count,
                    'qnode_ids': node.qnode_ids,
                    'type': node.type[0],
                    'edge_index': []
                }
                count = count + 1
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(tb, error_code=error_type.__name__)
            self.response.error(
                f"Something went wrong with retrieving nodes in message KG")
            return self.response

        ## loop over all edges in KG and create source node list and target node dict based on source_qnode_id, target_qnode_id as well as rel_edge_id (optional, otherwise all edges are considered)
        try:
            count = 0
            for edge in self.message.knowledge_graph.edges:
                if edge.provided_by != "ARAX":

                    nodes_info[edge.source_id]['edge_index'].append(count)
                    nodes_info[edge.target_id]['edge_index'].append(count)

                    if rel_edge_id:
                        if rel_edge_id in edge.qedge_ids:
                            if source_qnode_id in nodes_info[
                                    edge.source_id]['qnode_ids']:
                                edge_expand_kp.append(edge.is_defined_by)
                                rel_edge_type.update([edge.type])
                                source_node_list.append(edge.source_id)
                                if edge.target_id not in target_node_dict.keys(
                                ):
                                    target_node_dict[edge.target_id] = {
                                        edge.source_id
                                    }
                                else:
                                    target_node_dict[edge.target_id].update(
                                        [edge.source_id])
                            else:
                                edge_expand_kp.append(edge.is_defined_by)
                                rel_edge_type.update([edge.type])
                                source_node_list.append(edge.target_id)
                                if edge.source_id not in target_node_dict.keys(
                                ):
                                    target_node_dict[edge.source_id] = {
                                        edge.target_id
                                    }
                                else:
                                    target_node_dict[edge.source_id].update(
                                        [edge.target_id])
                        else:
                            pass
                    else:
                        if source_qnode_id in nodes_info[
                                edge.source_id]['qnode_ids']:
                            if target_qnode_id in nodes_info[
                                    edge.target_id]['qnode_ids']:
                                edge_expand_kp.append(edge.is_defined_by)
                                source_node_list.append(edge.source_id)
                                if edge.target_id not in target_node_dict.keys(
                                ):
                                    target_node_dict[edge.target_id] = {
                                        edge.source_id
                                    }
                                else:
                                    target_node_dict[edge.target_id].update(
                                        [edge.source_id])

                            else:
                                pass
                        elif target_qnode_id in nodes_info[
                                edge.source_id]['qnode_ids']:
                            if source_qnode_id in nodes_info[
                                    edge.target_id]['qnode_ids']:
                                edge_expand_kp.append(edge.is_defined_by)
                                source_node_list.append(edge.target_id)
                                if edge.source_id not in target_node_dict.keys(
                                ):
                                    target_node_dict[edge.source_id] = {
                                        edge.target_id
                                    }
                                else:
                                    target_node_dict[edge.source_id].update(
                                        [edge.target_id])

                            else:
                                pass
                        else:
                            pass

                else:
                    pass

                count = count + 1  ## record edge position in message.knowledge_graph

        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(tb, error_code=error_type.__name__)
            self.response.error(
                f"Something went wrong with retrieving edges in message KG")
            return self.response

        source_node_list = list(
            set(source_node_list))  ## remove the duplicate source node id

        ## check if there is no source node in message KG
        if len(source_node_list) == 0:
            self.response.error(
                f"No source node found in message KG for Fisher's Exact Test")
            return self.response

        ## check if there is no target node in message KG
        if len(target_node_dict) == 0:
            self.response.error(
                f"No target node found in message KG for Fisher's Exact Test")
            return self.response

        ## check if source node has more than one type. If so, throw an error
        if source_node_type is None:
            self.response.error(
                f"Source node with qnode id {source_qnode_id} was set to None in Query Graph. Please specify the node type"
            )
            return self.response
        else:
            pass

        ## check if target node has more than one type. If so, throw an error
        if target_node_type is None:
            self.response.error(
                f"Target node with qnode id {target_qnode_id} was set to None in Query Graph. Please specify the node type"
            )
            return self.response
        else:
            pass

        ##check how many kps were used in message KG. If more than one, the one with the max number of edges connnected to both source nodes and target nodes was used
        if len(collections.Counter(edge_expand_kp)) == 1:
            kp = edge_expand_kp[0]
        else:
            occurrences = collections.Counter(edge_expand_kp)
            max_index = max(
                [(value, index)
                 for index, value in enumerate(occurrences.values())]
            )[1]  # if there are more than one kp having the maximum number of edges, then the last one based on alphabetical order will be chosen.
            kp = list(occurrences.keys())[max_index]
            self.response.debug(f"{occurrences}")
            self.response.warning(
                f"More than one knowledge provider was detected to be used for expanding the edges connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id}"
            )
            self.response.warning(
                f"The knowledge provider {kp} was used to calculate Fisher's exact test because it has the maximum number of edges both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id}"
            )

        ## Print out some information used to calculate FET
        if len(source_node_list) == 1:
            self.response.debug(
                f"{len(source_node_list)} source node with qnode id {source_qnode_id} and node type {source_node_type} was found in message KG and used to calculate Fisher's Exact Test"
            )
        else:
            self.response.debug(
                f"{len(source_node_list)} source nodes with qnode id {source_qnode_id} and node type {source_node_type} was found in message KG and used to calculate Fisher's Exact Test"
            )
        if len(target_node_dict) == 1:
            self.response.debug(
                f"{len(target_node_dict)} target node with qnode id {target_qnode_id} and node type {target_node_type} was found in message KG and used to calculate Fisher's Exact Test"
            )
        else:
            self.response.debug(
                f"{len(target_node_dict)} target nodes with qnode id {target_qnode_id} and node type {target_node_type} was found in message KG and used to calculate Fisher's Exact Test"
            )

        # find all nodes with the same type of 'source_qnode_id' nodes in specified KP ('ARAX/KG1','ARAX/KG2','BTE') that are adjacent to target nodes
        if kp == "ARAX/KG1":
            # query adjacent node in one DSL command by providing a list of query nodes to add_qnode()
            if rel_edge_id:
                if len(
                        rel_edge_type
                ) == 1:  # if the edge with rel_edge_id has only type, we use this rel_edge_type to find all source nodes in KP
                    self.response.debug(
                        f"{kp} and edge relation type {list(rel_edge_type)[0]} were used to calculate total adjacent nodes in Fisher's Exact Test"
                    )
                    result = self.query_size_of_adjacent_nodes(
                        node_curie=list(target_node_dict.keys()),
                        adjacent_type=source_node_type,
                        kp=kp,
                        rel_type=list(rel_edge_type)[0],
                        use_cypher_command=True)
                else:  # if the edge with rel_edge_id has more than one type, we ignore the edge type and use all types to find all source nodes in KP
                    self.response.warning(
                        f"The edges with specified qedge id {rel_edge_id} have more than one type, we ignore the edge type and use all types to calculate Fisher's Exact Test"
                    )
                    self.response.debug(
                        f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test"
                    )
                    result = self.query_size_of_adjacent_nodes(
                        node_curie=list(target_node_dict.keys()),
                        adjacent_type=source_node_type,
                        kp=kp,
                        rel_type=None,
                        use_cypher_command=True)
            else:  # if no rel_edge_id is specified, we ignore the edge type and use all types to find all source nodes in KP
                self.response.debug(
                    f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test"
                )
                result = self.query_size_of_adjacent_nodes(
                    node_curie=list(target_node_dict.keys()),
                    adjacent_type=source_node_type,
                    kp=kp,
                    rel_type=None,
                    use_cypher_command=True)

            if result is None:
                return self.response  ## Something wrong happened for querying the adjacent nodes
            else:
                size_of_target = result
        else:
            # query adjacent node for query nodes one by one in parallel
            if rel_edge_id:
                if len(
                        rel_edge_type
                ) == 1:  # if the edge with rel_edge_id has only type, we use this rel_edge_type to find all source nodes in KP
                    self.response.debug(
                        f"{kp} and edge relation type {list(rel_edge_type)[0]} were used to calculate total adjacent nodes in Fisher's Exact Test"
                    )
                    parameter_list = [
                        (node, source_node_type, kp, list(rel_edge_type)[0])
                        for node in list(target_node_dict.keys())
                    ]
                else:  # if the edge with rel_edge_id has more than one type, we ignore the edge type and use all types to find all source nodes in KP
                    self.response.warning(
                        f"The edges with specified qedge id {rel_edge_id} have more than one type, we ignore the edge type and use all types to calculate Fisher's Exact Test"
                    )
                    self.response.debug(
                        f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test"
                    )
                    parameter_list = [(node, source_node_type, kp, None)
                                      for node in list(target_node_dict.keys())
                                      ]
            else:  # if no rel_edge_id is specified, we ignore the edge type and use all types to find all source nodes in KP
                self.response.debug(
                    f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test"
                )
                parameter_list = [(node, source_node_type, kp, None)
                                  for node in list(target_node_dict.keys())]

            ## get the count of all nodes with the type of 'source_qnode_id' nodes in KP for each target node in parallel
            try:
                with multiprocessing.Pool() as executor:
                    target_count_res = [
                        elem for elem in executor.map(
                            self._query_size_of_adjacent_nodes_parallel,
                            parameter_list)
                    ]
                    executor.close()
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(
                    f"Something went wrong with querying adjacent nodes in parallel"
                )
                return self.response

            if any([type(elem) is list for elem in target_count_res]):
                for msg in [
                        elem2 for elem1 in target_count_res
                        if type(elem1) is list for elem2 in elem1
                ]:
                    if type(msg) is tuple:
                        self.response.error(msg[0], error_code=msg[1])
                    else:
                        self.response.error(msg)
                return self.response  ## Something wrong happened for querying the adjacent nodes
            else:
                for index in range(len(target_node_dict)):
                    node = list(target_node_dict.keys())[index]
                    size_of_target[node] = target_count_res[index]

        ## Based on KP detected in message KG, find the total number of node with the same type of source node
        if kp == 'ARAX/KG1':
            size_of_total = self.size_of_given_type_in_KP(
                node_type=source_node_type, use_cypher_command=True,
                kg='KG1')  ## Try cypher query first
            if size_of_total is not None:
                if size_of_total != 0:
                    self.response.debug(
                        f"ARAX/KG1 and cypher query were used to calculate total number of node with the same type of source node in Fisher's Exact Test"
                    )
                    self.response.debug(
                        f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1"
                    )
                    pass
                else:
                    size_of_total = self.size_of_given_type_in_KP(
                        node_type=source_node_type,
                        use_cypher_command=False,
                        kg='KG1'
                    )  ## If cypher query fails, then try kgNodeIndex
                    if size_of_total == 0:
                        self.response.error(
                            f"KG1 has 0 node with the same type of source node with qnode id {source_qnode_id}"
                        )
                        return self.response
                    else:
                        self.response.debug(
                            f"ARAX/KG1 and kgNodeIndex were used to calculate total number of node with the same type of source node in Fisher's Exact Test"
                        )
                        self.response.debug(
                            f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1"
                        )
                        pass
            else:
                return self.response  ## Something wrong happened for querying total number of node with the same type of source node

        elif kp == 'ARAX/KG2':
            ## check KG1 first as KG2 might have many duplicates. If KG1 is 0, then check KG2
            size_of_total = self.size_of_given_type_in_KP(
                node_type=source_node_type, use_cypher_command=True,
                kg='KG1')  ## Try cypher query first
            if size_of_total is not None:
                if size_of_total != 0:
                    self.response.warning(
                        f"Although ARAX/KG2 was found to have the maximum number of edges connected to both {source_qnode_id} and {target_qnode_id}, ARAX/KG1 and cypher query were used to find the total number of nodes with the same type of source node with qnode id {source_qnode_id} as KG2 might have many duplicates"
                    )
                    self.response.debug(
                        f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1"
                    )
                    pass
                else:
                    size_of_total = self.size_of_given_type_in_KP(
                        node_type=source_node_type,
                        use_cypher_command=False,
                        kg='KG1'
                    )  ## If cypher query fails, then try kgNodeIndex
                    if size_of_total is not None:
                        if size_of_total != 0:
                            self.response.warning(
                                f"Although ARAX/KG2 was found to have the maximum number of edges connected to both {source_qnode_id} and {target_qnode_id}, ARAX/KG1 and kgNodeIndex were used to find the total number of nodes with the same type of source node with qnode id {source_qnode_id} as KG2 might have many duplicates"
                            )
                            self.response.debug(
                                f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1"
                            )
                            pass
                        else:
                            size_of_total = self.size_of_given_type_in_KP(
                                node_type=source_node_type,
                                use_cypher_command=False,
                                kg='KG2')
                            if size_of_total is None:
                                return self.response  ## Something wrong happened for querying total number of node with the same type of source node
                            elif size_of_total == 0:
                                self.response.error(
                                    f"KG2 has 0 node with the same type of source node with qnode id {source_qnode_id}"
                                )
                                return self.response
                            else:
                                self.response.debug(
                                    f"ARAX/KG2 and kgNodeIndex were used to calculate total number of node with the same type of source node in Fisher's Exact Test"
                                )
                                self.response.debug(
                                    f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG2"
                                )
                                pass
                    else:
                        return self.response  ## Something wrong happened for querying total number of node with the same type of source node
            else:
                return self.response  ## Something wrong happened for querying total number of node with the same type of source node
        else:
            self.response.error(
                f"Only KG1 or KG2 is allowable to calculate the Fisher's exact test temporally"
            )
            return self.response

        size_of_query_sample = len(source_node_list)

        self.response.debug(f"Computing Fisher's Exact Test P-value")
        # calculate FET p-value for each target node in parallel
        parameter_list = [
            (node, len(target_node_dict[node]),
             size_of_target[node] - len(target_node_dict[node]),
             size_of_query_sample - len(target_node_dict[node]),
             (size_of_total - size_of_target[node]) -
             (size_of_query_sample - len(target_node_dict[node])))
            for node in target_node_dict
        ]

        try:
            with multiprocessing.Pool() as executor:
                FETpvalue_list = [
                    elem for elem in executor.map(
                        self._calculate_FET_pvalue_parallel, parameter_list)
                ]
                executor.close()
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(tb, error_code=error_type.__name__)
            self.response.error(
                f"Something went wrong with computing Fisher's Exact Test P-value"
            )
            return self.response

        if any([type(elem) is list for elem in FETpvalue_list]):
            for msg in [
                    elem2 for elem1 in FETpvalue_list if type(elem1) is list
                    for elem2 in elem1
            ]:
                if type(msg) is tuple:
                    self.response.error(msg[0], error_code=msg[1])
                else:
                    self.response.error(msg)
            return self.response
        else:
            output = dict(FETpvalue_list)

        # check if the results need to be filtered
        output = dict(sorted(output.items(), key=lambda x: x[1]))
        if cutoff:
            output = dict(filter(lambda x: x[1] < cutoff, output.items()))
        else:
            pass
        if top_n:
            output = dict(list(output.items())[:top_n])
        else:
            pass

        # add the virtual edge with FET result to message KG
        self.response.debug(
            f"Adding virtual edge with FET result to message KG")

        virtual_edge_list = [
            Edge(id=f"{value[0]}_{index}",
                 type='has_fisher_exact_test_p-value_with',
                 relation=value[0],
                 source_id=value[2],
                 target_id=value[3],
                 is_defined_by="ARAX",
                 defined_datetime=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                 provided_by="ARAX",
                 confidence=None,
                 weight=None,
                 edge_attributes=[
                     EdgeAttribute(type="data:1669",
                                   name="fisher_exact_test_p-value",
                                   value=str(value[1]),
                                   url=None)
                 ],
                 qedge_ids=[value[0]]) for index, value in enumerate(
                     [(virtual_relation_label, output[adj], node, adj)
                      for adj in target_node_dict if adj in output.keys()
                      for node in target_node_dict[adj]], 1)
        ]

        self.message.knowledge_graph.edges.extend(virtual_edge_list)

        count = len(virtual_edge_list)

        self.response.debug(
            f"{count} new virtual edges were added to message KG")

        # add the virtual edge to message QG
        if count > 0:
            self.response.debug(f"Adding virtual edge to message QG")
            edge_type = "has_fisher_exact_test_p-value_with"
            q_edge = QEdge(id=virtual_relation_label,
                           type=edge_type,
                           relation=virtual_relation_label,
                           source_id=source_qnode_id,
                           target_id=target_qnode_id)
            self.message.query_graph.edges.append(q_edge)
            self.response.debug(f"One virtual edge was added to message QG")

        return self.response
    def _add_virtual_edges(self, source_qnode_id, target_qnode_id):
        # This function adds ICEES exposures data as virtual edges between nodes with the specified qnode IDs
        knowledge_graph = self.message.knowledge_graph
        log = self.response
        nodes_by_qg_id = self._get_nodes_by_qg_id(knowledge_graph)
        source_curies = set(nodes_by_qg_id.get(source_qnode_id))
        target_curies = set(nodes_by_qg_id.get(target_qnode_id))
        # Determine which curies ICEES 'knows' about
        known_source_curies = {
            curie
            for curie in source_curies if self._get_accepted_synonyms(curie)
        }
        known_target_curies = {
            curie
            for curie in target_curies if self._get_accepted_synonyms(curie)
        }

        num_node_pairs_recognized = 0
        for source_curie, target_curie in itertools.product(
                source_curies, target_curies):
            # Query ICEES only for synonyms it 'knows' about
            if source_curie in known_source_curies and target_curie in known_target_curies:
                accepted_source_synonyms = self._get_accepted_synonyms(
                    source_curie)
                accepted_target_synonyms = self._get_accepted_synonyms(
                    target_curie)
                for source_synonym, target_synonym in itertools.product(
                        accepted_source_synonyms, accepted_target_synonyms):
                    qedge = QEdge(
                        id=f"icees_{source_synonym}--{target_synonym}",
                        source_id=source_synonym,
                        target_id=target_synonym)
                    log.debug(
                        f"Sending query to ICEES+ for {source_synonym}--{target_synonym}"
                    )
                    p_value = self._get_icees_p_value_for_edge(qedge, log)
                    if p_value is not None:
                        num_node_pairs_recognized += 1
                        # Add a new virtual edge with this data
                        virtual_edge = self._create_icees_virtual_edge(
                            source_curie, target_curie, p_value)
                        knowledge_graph.edges.append(virtual_edge)
                        break  # Don't worry about checking remaining synonym combos if we got results
            # Add an 'empty' virtual edge (p-value of None) if we couldn't find any results for this node pair #1009
            empty_virtual_edge = self._create_icees_virtual_edge(
                source_curie, target_curie, None)
            knowledge_graph.edges.append(empty_virtual_edge)

        # Add a qedge to the query graph that corresponds to our new virtual edges
        new_qedge = QEdge(id=self.virtual_relation_label,
                          source_id=source_qnode_id,
                          target_id=target_qnode_id,
                          type=self.icees_edge_type)
        self.message.query_graph.edges.append(new_qedge)

        if num_node_pairs_recognized:
            log.info(
                f"ICEES+ returned data for {num_node_pairs_recognized} node pairs"
            )
        else:
            log.warning(
                f"Could not find ICEES+ exposures data for any {source_qnode_id}--{target_qnode_id} node pairs"
            )
Example #7
0
    def add_qedge(self, message, input_parameters, describe=False):
        """
        Adds a new QEdge object to the QueryGraph inside the Message object
        :return: Response object with execution information
        :rtype: Response
        """

        # #### Internal documentation setup
        allowable_parameters = {
            'id': {
                'Any string that is unique among all QEdge id fields, with recommended format e00, e01, e02, etc.'
            },
            'source_id': {
                'id of the source QNode already present in the QueryGraph (e.g. n01, n02)'
            },
            'target_id': {
                'id of the target QNode already present in the QueryGraph (e.g. n01, n02)'
            },
            'type': {
                'Any valid Translator/BioLink relationship type (e.g. physically_interacts_with, participates_in)'
            },
        }
        if describe:
            #allowable_parameters['action'] = { 'None' }
            #allowable_parameters = dict()
            allowable_parameters[
                'dsl_command'] = '`add_qedge()`'  # can't get this name at run-time, need to manually put it in per https://www.python.org/dev/peps/pep-3130/
            allowable_parameters[
                'brief_description'] = """The `add_qedge` method adds an additional QEdge to the QueryGraph in the Message object. Currently
                source_id and target_id QNodes must already be present in the QueryGraph. The specified type is not currently checked that it is a
                valid Translator/BioLink relationship type, but it should be."""
            return allowable_parameters

        #### Define a default response
        response = Response()
        self.response = response
        self.message = message

        #### Basic checks on arguments
        if not isinstance(input_parameters, dict):
            response.error("Provided parameters is not a dict",
                           error_code="ParametersNotDict")
            return response

        #### Define a complete set of allowed parameters and their defaults
        parameters = {
            'id': None,
            'source_id': None,
            'target_id': None,
            'type': None,
        }

        #### Loop through the input_parameters and override the defaults and make sure they are allowed
        for key, value in input_parameters.items():
            if key not in parameters:
                response.error(f"Supplied parameter {key} is not permitted",
                               error_code="UnknownParameter")
            else:
                parameters[key] = value
        #### Return if any of the parameters generated an error (showing not just the first one)
        if response.status != 'OK':
            return response

        #### Store these final parameters for convenience
        response.data['parameters'] = parameters
        self.parameters = parameters

        #### Now apply the filters. Order of operations is probably quite important
        #### Scalar value filters probably come first like minimum_confidence, then complex logic filters
        #### based on edge or node properties, and then finally maximum_results
        response.info(
            f"Adding a QueryEdge to Message with parameters {parameters}")

        #### Make sure there's a query_graph already here
        if message.query_graph is None:
            message.query_graph = QueryGraph()
            message.query_graph.nodes = []
            message.query_graph.edges = []
        if message.query_graph.edges is None:
            message.query_graph.edges = []

        #### Create a QEdge
        qedge = QEdge()
        if parameters['id'] is not None:
            id = parameters['id']
        else:
            id = self.__get_next_free_edge_id()
        qedge.id = id

        #### Get the list of available node_ids
        qnodes = message.query_graph.nodes
        ids = {}
        for qnode in qnodes:
            id = qnode.id
            ids[id] = 1

        #### Add the source_id
        if parameters['source_id'] is not None:
            if parameters['source_id'] not in ids:
                response.error(
                    f"While trying to add QEdge, there is no QNode with id {parameters['source_id']}",
                    error_code="UnknownSourceId")
                return response
            qedge.source_id = parameters['source_id']
        else:
            response.error(
                f"While trying to add QEdge, source_id is a required parameter",
                error_code="MissingSourceId")
            return response

        #### Add the target_id
        if parameters['target_id'] is not None:
            if parameters['target_id'] not in ids:
                response.error(
                    f"While trying to add QEdge, there is no QNode with id {parameters['target_id']}",
                    error_code="UnknownTargetId")
                return response
            qedge.target_id = parameters['target_id']
        else:
            response.error(
                f"While trying to add QEdge, target_id is a required parameter",
                error_code="MissingTargetId")
            return response

        #### Add the type if any. Need to verify it's an allowed type. FIXME
        if parameters['type'] is not None:
            qedge.type = parameters['type']

        #### Add it to the query_graph edge list
        message.query_graph.edges.append(qedge)

        #### Return the response
        return response
Example #8
0
    def compute_ngd(self):
        """
        Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info
        on the edge_attributes
        :default: The default value to set for NGD if it returns a nan
        :return: response
        """
        if self.response.status != 'OK':  # Catches any errors that may have been logged during initialization
            self._close_database()
            return self.response
        parameters = self.parameters
        self.response.debug(f"Computing NGD")
        self.response.info(
            f"Computing the normalized Google distance: weighting edges based on source/target node "
            f"co-occurrence frequency in PubMed abstracts")

        self.response.info(
            "Converting CURIE identifiers to human readable names")
        node_curie_to_name = dict()
        try:
            for node in self.message.knowledge_graph.nodes:
                node_curie_to_name[node.id] = node.name
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(f"Something went wrong when converting names")
            self.response.error(tb, error_code=error_type.__name__)

        name = "normalized_google_distance"
        type = "EDAM:data_2526"
        value = self.parameters['default_value']
        url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd"

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            curies_to_names = dict()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        source_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        target_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name

            # Convert these curies to their canonicalized curies (needed for the local NGD system)
            canonicalized_curie_map = self._get_canonical_curies_map(
                list(source_curies_to_decorate.union(
                    target_curies_to_decorate)))
            self.load_curie_to_pmids_data(canonicalized_curie_map.values())
            added_flag = False  # check to see if any edges where added
            num_computed_total = 0
            num_computed_slow = 0
            self.response.debug(
                f"Looping through node pairs and calculating NGD values")
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute
            for (source_curie,
                 target_curie) in itertools.product(source_curies_to_decorate,
                                                    target_curies_to_decorate):
                # create the edge attribute if it can be
                source_name = curies_to_names[source_curie]
                target_name = curies_to_names[target_curie]
                num_computed_total += 1
                canonical_source_curie = canonicalized_curie_map.get(
                    source_curie, source_curie)
                canonical_target_curie = canonicalized_curie_map.get(
                    target_curie, target_curie)
                ngd_value = self.calculate_ngd_fast(canonical_source_curie,
                                                    canonical_target_curie)
                if ngd_value is None:
                    ngd_value = self.NGD.get_ngd_for_all(
                        [source_curie, target_curie],
                        [source_name, target_name])
                    self.response.debug(
                        f"Had to use eUtils to compute NGD between {source_name} "
                        f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). "
                        f"Value is: {ngd_value}")
                    num_computed_slow += 1
                if np.isfinite(
                        ngd_value
                ):  # if ngd is finite, that's ok, otherwise, stay with default
                    value = ngd_value
                edge_attribute = EdgeAttribute(
                    type=type, name=name, value=str(value),
                    url=url)  # populate the NGD edge attribute
                if edge_attribute:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "has_normalized_google_distance_with"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id,
                                type=edge_type,
                                relation=relation,
                                source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by,
                                defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence,
                                weight=weight,
                                edge_attributes=[edge_attribute],
                                qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                #edge_type = parameters['virtual_edge_type']
                edge_type = "has_normalized_google_distance_with"
                relation = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation,
                               type=edge_type,
                               relation=relation,
                               source_id=parameters['source_qnode_id'],
                               target_id=parameters['target_qnode_id'])
                self.message.query_graph.edges.append(q_edge)

            self.response.info(f"NGD values successfully added to edges")
            num_computed_fast = num_computed_total - num_computed_slow
            percent_computed_fast = round(
                (num_computed_fast / num_computed_total) * 100)
            self.response.debug(
                f"Used fastNGD for {percent_computed_fast}% of edges "
                f"({num_computed_fast} of {num_computed_total})")
        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                # Map all nodes to their canonicalized curies in one batch (need canonical IDs for the local NGD system)
                canonicalized_curie_map = self._get_canonical_curies_map(
                    [node.id for node in self.message.knowledge_graph.nodes])
                self.load_curie_to_pmids_data(canonicalized_curie_map.values())
                num_computed_total = 0
                num_computed_slow = 0
                self.response.debug(
                    f"Looping through edges and calculating NGD values")
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = [
                        ]  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_name = node_curie_to_name[source_curie]
                    target_name = node_curie_to_name[target_curie]
                    num_computed_total += 1
                    canonical_source_curie = canonicalized_curie_map.get(
                        source_curie, source_curie)
                    canonical_target_curie = canonicalized_curie_map.get(
                        target_curie, target_curie)
                    ngd_value = self.calculate_ngd_fast(
                        canonical_source_curie, canonical_target_curie)
                    if ngd_value is None:
                        ngd_value = self.NGD.get_ngd_for_all(
                            [source_curie, target_curie],
                            [source_name, target_name])
                        self.response.debug(
                            f"Had to use eUtils to compute NGD between {source_name} "
                            f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). "
                            f"Value is: {ngd_value}")
                        num_computed_slow += 1
                    if np.isfinite(
                            ngd_value
                    ):  # if ngd is finite, that's ok, otherwise, stay with default
                        value = ngd_value
                    ngd_edge_attribute = EdgeAttribute(
                        type=type, name=name, value=str(value),
                        url=url)  # populate the NGD edge attribute
                    edge.edge_attributes.append(
                        ngd_edge_attribute
                    )  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(
                    f"Something went wrong adding the NGD edge attributes")
            else:
                self.response.info(f"NGD values successfully added to edges")
                num_computed_fast = num_computed_total - num_computed_slow
                percent_computed_fast = round(
                    (num_computed_fast / num_computed_total) * 100)
                self.response.debug(
                    f"Used fastNGD for {percent_computed_fast}% of edges "
                    f"({num_computed_fast} of {num_computed_total})")
            self._close_database()
            return self.response
Example #9
0
def copy_qedge(old_qedge: QEdge) -> QEdge:
    new_qedge = QEdge()
    for edge_property in new_qedge.to_dict():
        value = getattr(old_qedge, edge_property)
        setattr(new_qedge, edge_property, value)
    return new_qedge
    def answer(source_node_ID,
               target_node_type,
               association_node_type,
               use_json=False,
               threshold=0.2,
               n=20):
        """
		Answers the question what X are similar to Y based on overlap of common Z nodes. X is target_node_type,
		Y is source_node_ID, Z is association_node_type. The relationships are automatically determined in
		SimilarNodesInCommon by looking for 1 hop relationships and poping the FIRST one (you are warned).
		:param source_node_ID: actual name in the KG
		:param target_node_type: kinds of nodes you want returned
		:param association_node_type: kind of node you are computing the Jaccard overlap on
		:param use_json: print the results in standardized format
		:param threshold: only return results where jaccard is >= this threshold
		:param n: number of results to return (default 20)
		:return: reponse (or printed text)
		"""

        # Initialize the response class
        response = FormatOutput.FormatResponse(5)
        # add the column names for the row data
        response.message.table_column_names = [
            "source name", "source ID", "target name", "target ID",
            "Jaccard index"
        ]

        # Initialize the similar nodes class
        similar_nodes_in_common = SimilarNodesInCommon.SimilarNodesInCommon()

        # get the description
        source_node_description = RU.get_node_property(source_node_ID, 'name')

        # get the source node label
        source_node_label = RU.get_node_property(source_node_ID, 'label')

        # Get the nodes in common
        node_jaccard_tuples_sorted, error_code, error_message = similar_nodes_in_common.get_similar_nodes_in_common_source_target_association(
            source_node_ID, target_node_type, association_node_type, threshold)

        # reduce to top 100
        if len(node_jaccard_tuples_sorted) > n:
            node_jaccard_tuples_sorted = node_jaccard_tuples_sorted[0:n]

        # make sure that the input node isn't in the list
        node_jaccard_tuples_sorted = [
            i for i in node_jaccard_tuples_sorted if i[0] != source_node_ID
        ]

        # check for an error
        if error_code is not None or error_message is not None:
            if not use_json:
                print(error_message)
                return
            else:
                response.add_error_message(error_code, error_message)
                response.print()
                return

        #### If use_json not specified, then return results as a fairly plain list
        if not use_json:
            to_print = "The %s's involving similar %ss as %s are: \n" % (
                target_node_type, association_node_type,
                source_node_description)
            for other_disease_ID, jaccard in node_jaccard_tuples_sorted:
                to_print += "%s\t%s\tJaccard %f\n" % (
                    other_disease_ID,
                    RU.get_node_property(other_disease_ID, 'name'), jaccard)
            print(to_print)

        #### Else if use_json requested, return the results in the Translator standard API JSON format
        else:

            #### Create the QueryGraph for this type of question
            query_graph = QueryGraph()
            source_node = QNode()
            source_node.id = "n00"
            source_node.curie = source_node_ID
            source_node.type = source_node_label
            association_node = QNode()
            association_node.id = "n01"
            association_node.type = association_node_type
            association_node.is_set = True
            target_node = QNode()
            target_node.id = "n02"
            target_node.type = target_node_type
            query_graph.nodes = [source_node, association_node, target_node]

            #source_association_relationship_type = "unknown1"
            edge1 = QEdge()
            edge1.id = "en00-n01"
            edge1.source_id = "n00"
            edge1.target_id = "n01"
            #edge1.type = source_association_relationship_type

            #association_target_relationship_type = "unknown2"
            edge2 = QEdge()
            edge2.id = "en01-n02"
            edge2.source_id = "n01"
            edge2.target_id = "n02"
            #edge2.type = association_target_relationship_type

            query_graph.edges = [edge1, edge2]

            #### DONT Suppress the query_graph because we can now do the knowledge_map with v0.9.1
            response.message.query_graph = query_graph

            #### Create a mapping dict with the source curie and node types and edge types. This dict is used for reverse lookups by type
            #### for mapping to the QueryGraph. There is a potential point of failure here if there are duplicate node or edge types. FIXME
            response._type_map = dict()
            response._type_map[source_node.curie] = source_node.id
            response._type_map[association_node.type] = association_node.id
            response._type_map[target_node.type] = target_node.id
            response._type_map["e" + edge1.source_id + "-" +
                               edge1.target_id] = edge1.id
            response._type_map["e" + edge2.source_id + "-" +
                               edge2.target_id] = edge2.id

            #### Extract the sorted IDs from the list of tuples
            node_jaccard_ID_sorted = [
                id for id, jac in node_jaccard_tuples_sorted
            ]

            # print(RU.return_subgraph_through_node_labels(source_node_ID, source_node_label, node_jaccard_ID_sorted, target_node_type,
            #										[association_node_type], with_rel=[], directed=True, debug=True))

            # get the entire subgraph
            g = RU.return_subgraph_through_node_labels(source_node_ID,
                                                       source_node_label,
                                                       node_jaccard_ID_sorted,
                                                       target_node_type,
                                                       [association_node_type],
                                                       with_rel=[],
                                                       directed=False,
                                                       debug=False)

            # extract the source_node_number
            for node, data in g.nodes(data=True):
                if data['properties']['id'] == source_node_ID:
                    source_node_number = node
                    break

            # Get all the target numbers
            target_id2numbers = dict()
            node_jaccard_ID_sorted_set = set(node_jaccard_ID_sorted)
            for node, data in g.nodes(data=True):
                if data['properties']['id'] in node_jaccard_ID_sorted_set:
                    target_id2numbers[data['properties']['id']] = node

            for other_disease_ID, jaccard in node_jaccard_tuples_sorted:
                target_name = RU.get_node_property(other_disease_ID, 'name')
                to_print = "The %s %s involves similar %ss as %s with similarity value %f" % (
                    target_node_type, target_name, association_node_type,
                    source_node_description, jaccard)

                # get all the shortest paths between source and target
                all_paths = nx.all_shortest_paths(
                    g, source_node_number, target_id2numbers[other_disease_ID])

                # get all the nodes on these paths
                #try:
                if 1 == 1:
                    rel_nodes = set()
                    for path in all_paths:
                        for node in path:
                            rel_nodes.add(node)

                    if rel_nodes:
                        # extract the relevant subgraph
                        sub_g = nx.subgraph(g, rel_nodes)

                        # add it to the response
                        res = response.add_subgraph(sub_g.nodes(data=True),
                                                    sub_g.edges(data=True),
                                                    to_print,
                                                    jaccard,
                                                    return_result=True)
                        res.essence = "%s" % target_name  # populate with essence of question result
                        res.essence_type = target_node_type
                        row_data = []  # initialize the row data
                        row_data.append("%s" % source_node_description)
                        row_data.append("%s" % source_node_ID)
                        row_data.append("%s" % target_name)
                        row_data.append("%s" % other_disease_ID)
                        row_data.append("%f" % jaccard)
                        res.row_data = row_data


#				except:
#					pass
            response.print()
Example #11
0
    def answer(self,
               source_name,
               target_label,
               relationship_type,
               use_json=False,
               directed=False):
        """
		Answer a question of the type "What proteins does drug X target" but is general:
		 what <node X type> does <node Y grounded> <relatioship Z> that can be answered in one hop in the KG (increasing the step size if necessary).
		:param query_terms: a triple consisting of a source node name (KG neo4j node name, the target label (KG neo4j
		"node label") and the relationship type (KG neo4j "Relationship type")
		:param source_name: KG neo4j node name (eg "carbetocin")
		:param target_label: KG node label (eg. "protein")
		:param relationship_type: KG relationship type (eg. "physically_interacts_with")
		:param use_json: If the answer should be in Eric's Json standardized API output format
		:return: list of dictionaries containing the nodes that are one hop (along relationship type) that connect source to target.
		"""
        # Get label/kind of node the source is
        source_label = RU.get_node_property(source_name, "label")

        # Get the subgraph (all targets along relationship)
        has_intermediate_node = False
        try:
            g = RU.return_subgraph_paths_of_type(source_name,
                                                 source_label,
                                                 None,
                                                 target_label,
                                                 [relationship_type],
                                                 directed=directed)
        except CustomExceptions.EmptyCypherError:
            try:
                has_intermediate_node = True
                g = RU.return_subgraph_paths_of_type(
                    source_name,
                    source_label,
                    None,
                    target_label, ['subclass_of', relationship_type],
                    directed=directed)
            except CustomExceptions.EmptyCypherError:
                error_message = "No path between %s and %s via relationship %s" % (
                    source_name, target_label, relationship_type)
                error_code = "NoPathsFound"
                response = FormatOutput.FormatResponse(3)
                response.add_error_message(error_code, error_message)
                return response

        # extract the source_node_number
        for node, data in g.nodes(data=True):
            if data['properties']['id'] == source_name:
                source_node_number = node
                break

        # Get all the target numbers
        target_numbers = []
        for node, data in g.nodes(data=True):
            if data['properties']['id'] != source_name:
                target_numbers.append(node)

        # if there's an intermediate node, get the name
        if has_intermediate_node:
            neighbors = list(g.neighbors(source_node_number))
            if len(neighbors) > 1:
                error_message = "More than one intermediate node"
                error_code = "AmbiguousPath"
                response = FormatOutput.FormatResponse(3)
                response.add_error_message(error_code, error_message)
                return response
            else:
                intermediate_node = neighbors.pop()

        #### If use_json not specified, then return results as a fairly plain list
        if not use_json:
            results_list = list()
            for target_number in target_numbers:
                data = g.nodes[target_number]
                results_list.append({
                    'type':
                    list(set(data['labels']) - {'Base'}).pop(),
                    'name':
                    data['properties']['name'],
                    'desc':
                    data['properties']['name'],
                    'prob':
                    1
                })  # All these are known to be true
            return results_list

        #### Else if use_json requested, return the results in the Translator standard API JSON format
        else:
            response = FormatOutput.FormatResponse(3)  # it's a Q3 question
            response.message.table_column_names = [
                "source name", "source ID", "target name", "target ID"
            ]
            source_description = g.nodes[source_node_number]['properties'][
                'name']

            #### Create the QueryGraph for this type of question
            query_graph = QueryGraph()
            source_node = QNode()
            source_node.id = "n00"
            source_node.curie = g.nodes[source_node_number]['properties']['id']
            source_node.type = g.nodes[source_node_number]['properties'][
                'category']
            target_node = QNode()
            target_node.id = "n01"
            target_node.type = target_label
            query_graph.nodes = [source_node, target_node]
            edge1 = QEdge()
            edge1.id = "e00"
            edge1.source_id = "n00"
            edge1.target_id = "n01"
            edge1.type = relationship_type
            query_graph.edges = [edge1]
            response.message.query_graph = query_graph

            #### Create a mapping dict with the source curie and the target type. This dict is used for reverse lookups by type
            #### for mapping to the QueryGraph.
            response._type_map = dict()
            response._type_map[source_node.curie] = source_node.id
            response._type_map[target_node.type] = target_node.id
            response._type_map[edge1.type] = edge1.id

            #### Loop over all the returned targets and put them into the response structure
            for target_number in target_numbers:
                target_description = g.nodes[target_number]['properties'][
                    'name']
                if not has_intermediate_node:
                    subgraph = g.subgraph([source_node_number, target_number])
                else:
                    subgraph = g.subgraph(
                        [source_node_number, intermediate_node, target_number])
                res = response.add_subgraph(
                    subgraph.nodes(data=True),
                    subgraph.edges(data=True),
                    "%s and %s are connected by the relationship %s" %
                    (source_description, target_description,
                     relationship_type),
                    1,
                    return_result=True)
                res.essence = "%s" % target_description  # populate with essence of question result
                res.essence_type = g.nodes[target_number]['properties'][
                    'category']  # populate with the type of the essence of question result
                row_data = []  # initialize the row data
                row_data.append("%s" % source_description)
                row_data.append(
                    "%s" % g.nodes[source_node_number]['properties']['id'])
                row_data.append("%s" % target_description)
                row_data.append("%s" %
                                g.nodes[target_number]['properties']['id'])
                res.row_data = row_data
            return response
Example #12
0
    def compute_ngd(self):
        """
        Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info
        on the edge_attributes
        :default: The default value to set for NGD if it returns a nan
        :return: response
        """
        parameters = self.parameters
        self.response.debug(f"Computing NGD")
        self.response.info(f"Computing the normalized Google distance: weighting edges based on source/target node "
                           f"co-occurrence frequency in PubMed abstracts")

        self.response.info("Converting CURIE identifiers to human readable names")
        node_curie_to_name = dict()
        try:
            for node in self.message.knowledge_graph.nodes:
                node_curie_to_name[node.id] = node.name
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(f"Something went wrong when converting names")
            self.response.error(tb, error_code=error_type.__name__)


        self.response.warning(f"Utilizing API calls to NCBI eUtils, so this may take a while...")
        name = "normalized_google_distance"
        type = "data:2526"
        value = self.parameters['default_value']
        url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd"
        ngd_method_counts = {"fast": 0, "slow": 0}

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            curies_to_names = dict()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        source_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        target_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
            added_flag = False  # check to see if any edges where added
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute
            for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate):
                # create the edge attribute if it can be
                source_name = curies_to_names[source_curie]
                target_name = curies_to_names[target_curie]
                self.response.debug(f"Computing NGD between {source_name} and {target_name}")
                ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name])
                ngd_method_counts[method_used] += 1
                if np.isfinite(ngd_value):  # if ngd is finite, that's ok, otherwise, stay with default
                    value = ngd_value
                edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url)  # populate the NGD edge attribute
                if edge_attribute:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "has_normalized_google_distance_with"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by, defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                #edge_type = parameters['virtual_edge_type']
                edge_type = "has_normalized_google_distance_with"
                relation = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation, type=edge_type, relation=relation,
                               source_id=parameters['source_qnode_id'], target_id=parameters[
                        'target_qnode_id'])
                self.message.query_graph.edges.append(q_edge)
        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = []  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_name = node_curie_to_name[source_curie]
                    target_name = node_curie_to_name[target_curie]
                    ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name])
                    ngd_method_counts[method_used] += 1
                    if np.isfinite(ngd_value):  # if ngd is finite, that's ok, otherwise, stay with default
                        value = ngd_value
                    ngd_edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url)  # populate the NGD edge attribute
                    edge.edge_attributes.append(ngd_edge_attribute)  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(f"Something went wrong adding the NGD edge attributes")
            else:
                self.response.info(f"NGD values successfully added to edges")
                self.response.debug(f"Used fast NGD for {ngd_method_counts['fast']} edges, back-up NGD method for {ngd_method_counts['slow']}")

            return self.response
Example #13
0
    def compute_jaccard(self):
        message = self.message
        parameters = self.parameters
        self.response.debug(f"Computing Jaccard distance and adding this information as virtual edges")
        self.response.info(f"Computing Jaccard distance and adding this information as virtual edges")

        self.response.info("Getting all relevant nodes")
        # TODO: should I check that they're connected to the start node, or just assume that they are?
        # TODO: For now, assume that they are
        try:
            intermediate_nodes = set()
            end_node_to_intermediate_node_set = dict()  # keys will be end node curies, values will be tuples the (intermediate curie ids, edge_type)
            for node in message.knowledge_graph.nodes:
                if parameters['intermediate_node_id'] in node.qnode_ids:
                    intermediate_nodes.add(node.id)  # add the intermediate node by it's identifier
                # also look for the source node id
                if parameters['start_node_id'] in node.qnode_ids:
                    source_node_id = node.id
                if parameters['end_node_id'] in node.qnode_ids:
                    end_node_to_intermediate_node_set[node.id] = set()

            # now iterate over the edges to look for the ones we need to add  # TODO: Here, I won't care which direction the edges are pointing
            for edge in message.knowledge_graph.edges:
                if edge.source_id in intermediate_nodes:  # if source is intermediate
                    if edge.target_id in end_node_to_intermediate_node_set:
                        end_node_to_intermediate_node_set[edge.target_id].add((edge.source_id, edge.type))  # add source
                elif edge.target_id in intermediate_nodes:  # if target is intermediate
                    if edge.source_id in end_node_to_intermediate_node_set:
                        end_node_to_intermediate_node_set[edge.source_id].add((edge.target_id, edge.type))  # add target

            # now compute the actual jaccard indexes
            denom = len(intermediate_nodes)
            end_node_to_jaccard = dict()
            for end_node_id in end_node_to_intermediate_node_set:
                # TODO: add code here if you care about edge types
                numerator = len(end_node_to_intermediate_node_set[end_node_id])
                jacc = numerator / float(denom)
                end_node_to_jaccard[end_node_id] = jacc

            # now add them all as virtual edges

            # edge properties
            j_iter = 0
            now = datetime.now()
            #edge_type = parameters['virtual_edge_type']
            edge_type = 'has_jaccard_index_with'
            qedge_ids = [parameters['virtual_relation_label']]
            relation = parameters['virtual_relation_label']
            is_defined_by = "ARAX"
            defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
            provided_by = "ARAX"
            confidence = None
            weight = None  # TODO: could make the jaccard index the weight
            try:
                source_id = source_node_id
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.warning(
                    f"Source node id: {parameters['start_node_id']} not found in the KG. Perhaps the KG is empty?")
                #self.response.error(tb, error_code=error_type.__name__)

            # edge attribute properties
            description = f"Jaccard index based on intermediate query nodes {parameters['intermediate_node_id']}"
            attribute_type = 'data:1772'
            name = "jaccard_index"
            url = None

            # now actually add the virtual edges in
            for end_node_id, value in end_node_to_jaccard.items():
                edge_attribute = EdgeAttribute(type=attribute_type, name=name, value=value, url=url)
                id = f"J{j_iter}"
                j_iter += 1
                target_id = end_node_id
                edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id, target_id=target_id,
                            is_defined_by=is_defined_by, defined_datetime=defined_datetime, provided_by=provided_by,
                            confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids)
                message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            q_edge = QEdge(id=relation, type=edge_type, relation=relation, source_id=parameters['start_node_id'], target_id=parameters['end_node_id'])  # TODO: ok to make the id and type the same thing?
            self.message.query_graph.edges.append(q_edge)

            return self.response
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(f"Something went wrong when computing the Jaccard index")
            self.response.error(tb, error_code=error_type.__name__)
Example #14
0
    def interpret_query_graph(self, query):
        """Try to interpret a QueryGraph and convert it into something RTX can process
        """

        #### Create a default response dict
        response = {
            "message_code": "InternalError",
            "code_description": "interpret_query_graph exited abnormally"
        }

        query_graph = query["message"]["query_graph"]
        nodes = query_graph["nodes"]
        edges = query_graph["edges"]
        n_nodes = len(nodes)
        n_edges = len(edges)
        eprint("DEBUG: n_nodes = %d, n_edges = %d" % (n_nodes, n_edges))

        #### Handle impossible cases
        if n_nodes == 0:
            response = {
                "message_code":
                "QueryGraphZeroNodes",
                "code_description":
                "Submitted QueryGraph has 0 nodes. At least 1 node is required"
            }
            return (response)
        if n_nodes == 1 and n_edges > 0:
            response = {
                "message_code":
                "QueryGraphTooManyEdges",
                "code_description":
                "Submitted QueryGraph may not have edges if there is only one node"
            }
            return (response)
        if n_nodes == 2 and n_edges > 1:
            response = {
                "message_code":
                "QueryGraphTooManyEdges",
                "code_description":
                "Submitted QueryGraph may not have more than 1 edge if there are only 2 nodes"
            }
            return (response)
        if n_nodes > 2:
            response = {
                "message_code":
                "UnsupportedQueryGraph",
                "code_description":
                "Submitted QueryGraph may currently only have 1 or 2 node. Support for 3 or more nodes coming soon."
            }
            return (response)

        #### Handle the single node case
        if n_nodes == 1:
            response = {
                "message_code": "OK",
                "code_description": "Interpreted QueryGraph as single node Q0"
            }
            response["id"] = "Q0"
            entity = nodes[0]["curie"]
            eprint("DEBUG: Q0 - entity = %s" % entity)
            response["terms"] = {"term": entity}
            response["original_question"] = "Submitted QueryGraph"
            response["restated_question"] = "What is %s?" % entity
            return (response)

        #### Handle the 2 node case
        if n_nodes == 2:
            eprint("DEBUG: Handling the 2-node case")
            source_type = None
            source_name = None
            target_type = None
            edge_type = None

            #### Loop through nodes trying to figure out which is the source and target
            for qnode in nodes:
                node = QNode.from_dict(qnode)

                if node.type == "gene":
                    if node.curie is None:
                        node.type = "protein"
                    else:
                        response = {
                            "message_code":
                            "UnsupportedNodeType",
                            "code_description":
                            "At least one of the nodes in the QueryGraph is a specific gene, which cannot be handled at the moment, a generic gene type with no curie is translated into a protein by RTX."
                        }
                        return (response)

                if node.curie is None:
                    if node.type is None:
                        response = {
                            "message_code":
                            "UnderspecifiedNode",
                            "code_description":
                            "At least one of the nodes in the QueryGraph has neither a CURIE nor a type. It must have one of those."
                        }
                        return (response)
                    else:
                        if target_type is None:
                            target_type = node.type
                        else:
                            response = {
                                "message_code":
                                "TooManyTargets",
                                "code_description":
                                "Both nodes have only types and are interpreted as targets. At least one node must have an exact identity."
                            }
                            return (response)
                else:
                    if re.match(r"'", node.curie):
                        response = {
                            "message_code":
                            "IllegalCharacters",
                            "code_description":
                            "Node type contains one or more illegal characters."
                        }
                        return (response)
                    if source_name is None:
                        if node.type is None:
                            response = {
                                "message_code":
                                "UnderspecifiedSourceNode",
                                "code_description":
                                "The source node must have a type in addition to a curie."
                            }
                            return (response)
                        else:
                            source_name = node.curie
                            source_type = node.type
                    else:
                        response = {
                            "message_code":
                            "OverspecifiedQueryGraph",
                            "code_description":
                            "All nodes in the QueryGraph have exact identities, so there is really nothing left to query."
                        }
                        return (response)

            #### Loop over the edges (should be just 1), ensuring that it has a type and recording it
            for qedge in edges:
                edge = QEdge.from_dict(qedge)
                if edge.type is None:
                    response = {
                        "message_code":
                        "EdgeWithNoType",
                        "code_description":
                        "At least one edge has no type. All edges must have a type."
                    }
                    return (response)
                else:
                    edge_type = edge.type

            #### Perform a crude sanitation of the input parameters to make sure the shell command won't fail or cause harm
            if re.match(r"'", edge_type) or re.match(
                    r"'", target_type) or re.match(r"'", source_name):
                response = {
                    "message_code":
                    "IllegalCharacters",
                    "code_description":
                    "The input query_graph entities contain one or more illegal characters."
                }
                return (response)

            #### Create the necessary components to hand off the queries to Q3Solution.py
            response = {
                "message_code":
                "OK",
                "code_description":
                "Interpreted QueryGraph as a single hop question"
            }
            response["id"] = "1hop"
            response["terms"] = {
                source_type: source_name,
                "target_label": target_type,
                "rel_type": edge_type
            }
            response["original_question"] = "Submitted QueryGraph"
            response[
                "restated_question"] = "Which %s(s) are connected to the %s %s via edge type %s?" % (
                    target_type, source_type, source_name, edge_type)
            #response["execution_string"] = "Q3Solution.py -s '%s' -t '%s' -r '%s' -j --directed" % (source_name,target_type,edge_type)
            response[
                "execution_string"] = "Q3Solution.py -s '%s' -t '%s' -r '%s' -j" % (
                    source_name, target_type, edge_type)
            return (response)

        return (response)