def test_float_exp_(): data = np.array([0., 1., 2., 5.]) expected = np.array([1., 2.71828183, 7.3890561, 148.4131591]) a = FloatTensor(data) a.exp_() # a does change when inlined np.testing.assert_almost_equal(expected, a.to_numpy(), decimal=4)
def test_float_log1p_(): data = np.array([1.2, -0.9, 9.9, 0.1, -0.455]) expected = np.array([0.78845736, -2.30258509, 2.38876279, 0.09531018, -0.60696948]) a = FloatTensor(data) a.log1p_() # a does change when inlined np.testing.assert_almost_equal(expected, a.to_numpy(), decimal=5)
def test_float_reciprocal_(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 0.5, 0.33333333, 0.25]) a = FloatTensor(data) a.reciprocal_() # a does change when inlined np.testing.assert_almost_equal(expected, a.to_numpy(), decimal=4)
def test_float_round_(): data = np.array([12.7292, -3.11, 9.00, 20.4999, 20.5001]) expected = np.array([13, -3, 9, 20, 21]) a = FloatTensor(data) a.round_() # a does change when inlined np.testing.assert_array_equal(expected, a.to_numpy())
def test_float_rsqrt_(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 0.7071068, 0.5773503, 0.5]) a = FloatTensor(data) a.rsqrt_() # a does change when inlined np.testing.assert_almost_equal(expected, a.to_numpy(), decimal=4)
def test_float_sqrt_(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 1.41421356, 1.73205081, 2.]) a = FloatTensor(data) a.sqrt_() # a does change when inlined np.testing.assert_almost_equal(expected, a.to_numpy(), decimal=4)
def test_float_exp_(): data = np.array([0, np.log(2)]) expected = np.array([1., 2.]) a = FloatTensor(data) a.exp_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_erfinv_(): data = np.array([0, 0.5, -1.]) expected = np.array([0., 0.47693628, -np.inf]) a = FloatTensor(data) a.erfinv_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_erf_(): data = np.array([0, -1., 10.]) expected = np.array([0., -0.84270078, 1.]) a = FloatTensor(data) a.erf_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_cosh_(): data = np.array([-0.6366, 0.2718, 0.4469, 1.3122]) expected = np.array([1.209566, 1.03716552, 1.10153294, 1.99178159]) a = FloatTensor(data) a.cosh_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_cos_(): data = np.array([-0.6366, 0.2718, 0.4469, 1.3122]) expected = np.array([0.80412155, 0.9632892, 0.90179116, 0.25572386]) a = FloatTensor(data) a.cos_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_atan_(): data = np.array([-0.6366, 0.2718, 0.4469, 1.3122]) expected = np.array([-0.56689745, 0.26538879, 0.42027298, 0.91960937]) a = FloatTensor(data) a.atan_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_asin_(): data = np.array([-0.6366, 0.2718, 0.4469, 1.3122]) expected = np.array([-0.69008148, 0.27526295, 0.46329704, np.nan]) a = FloatTensor(data) a.asin_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_floor_(): data = np.array([1.3869, 0.3912, -0.8634, -0.5468]) expected = np.array([1., 0., -1., -1.]) a = FloatTensor(data) a.floor_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_sqrt(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 1.41421356, 1.73205081, 2.]) a = FloatTensor(data) b = a.sqrt() np.testing.assert_almost_equal(expected, b.to_numpy(), decimal=4) # a doesn't change np.testing.assert_array_equal(data, a.to_numpy())
def test_float_acos_(): data = np.array([-1., -2., 3., 4., 5., -6.]) expected = np.array([1., 2., 3., 4., 5., 6.]) a = FloatTensor(data) a.abs_() # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_rsqrt(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 0.7071068, 0.5773503, 0.5]) a = FloatTensor(data) b = a.rsqrt() np.testing.assert_almost_equal(expected, b.to_numpy(), decimal=4) # a doesn't change np.testing.assert_array_equal(data, a.to_numpy())
def test_float_round(): data = np.array([12.7292, -3.11, 9.00, 20.4999, 20.5001]) expected = np.array([13, -3, 9, 20, 21]) a = FloatTensor(data) b = a.round() np.testing.assert_array_equal(expected, b.to_numpy()) # a doesn't change np.testing.assert_array_equal(data, a.to_numpy())
def test_float_reciprocal(): data = np.array([1., 2., 3., 4.]) expected = np.array([1., 0.5, 0.33333333, 0.25]) a = FloatTensor(data) b = a.reciprocal() np.testing.assert_almost_equal(expected, b.to_numpy(), decimal=4) # a doesn't change np.testing.assert_array_equal(data, a.to_numpy())
def test_float_exp(): data = np.array([0., 1., 2., 5.]) expected = np.array([1., 2.71828183, 7.3890561, 148.4131591]) a = FloatTensor(data) b = a.exp() np.testing.assert_almost_equal(expected, b.to_numpy(), decimal=4) # a doesn't change np.testing.assert_array_equal(data, a.to_numpy())
def test_float_fmod_(): data = np.array([-3, -2, -1, 1, 2, 3]) expected = np.array([-1., -0., -1., 1., 0., 1.]) a = FloatTensor(data) a.fmod_(2) # a does change when inlined np.testing.assert_almost_equal(a.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity)
def test_float_fmod(): data = np.array([-3, -2, -1, 1, 2, 3]) expected = np.array([-1., -0., -1., 1., 0., 1.]) a = FloatTensor(data) b = a.fmod(2) np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_ceil(): data = np.array([1.3869, 0.3912, -0.8634, -0.5468]) expected = np.array([2., 1., -0., -0.]) a = FloatTensor(data) b = a.ceil() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_erf(): data = np.array([0, -1., 10.]) expected = np.array([0., -0.84270078, 1.]) a = FloatTensor(data) b = a.erf() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_erfinv(): data = np.array([0, 0.5, -1.]) expected = np.array([0., 0.47693628, -np.inf]) a = FloatTensor(data) b = a.erfinv() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_exp(): data = np.array([0, np.log(2)]) expected = np.array([1., 2.]) a = FloatTensor(data) b = a.exp() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_acos(): data = np.array([-0.6366, 0.2718, 0.4469, 1.3122]) expected = np.array([2.26087785, 1.2955333, 1.10749924, np.nan]) a = FloatTensor(data) b = a.acos() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_abs(): data = np.array([-1., -2., 3., 4., 5., -6.]) expected = np.array([1., 2., 3., 4., 5., 6.]) a = FloatTensor(data) b = a.abs() np.testing.assert_almost_equal(b.to_numpy(), expected, decimal=decimal_accuracy, verbose=verbosity) # a doesn't change np.testing.assert_almost_equal(a.to_numpy(), data, decimal=decimal_accuracy, verbose=verbosity)
def test_float_trace(): data = np.random.randn(17, 17).astype('float') expected = data.trace() a = FloatTensor(data) actual = a.trace() np.testing.assert_almost_equal(actual, expected, decimal=decimal_accuracy, verbose=verbosity) a = a.gpu() actual = a.trace() np.testing.assert_almost_equal(actual, expected, decimal=decimal_accuracy, verbose=verbosity)
def predict(self,x): if(type(x) == list): x = np.array(x).astype('float') if(type(x) == np.array or type(x) == np.ndarray): x = FloatTensor(x,autograd=True, delete_after_use=False) return self.syft.forward(input=x).to_numpy()