def test_kernel_1d_2(): L = dx(u) + alpha*u # ... K = evaluate(L, u, Kernel('K'), xi) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*(1.0*alpha - 1.0*xi + 1.0*xj)*exp(-0.5*(xi - xj)**2) assert(K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), xj) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*(1.0*alpha + 1.0*xi - 1.0*xj)*exp(-0.5*(xi - xj)**2) assert(K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), (xi, xj)) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*(alpha**2 - 1.0*(xi - xj)**2 + 1.0)*exp(-0.5*(xi - xj)**2) assert(K == expected)
def test_kernel_1d_1(): L = u # ... K = evaluate(L, u, Kernel('K'), xi) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*exp(-0.5*(xi - xj)**2) assert(K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), xj) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*exp(-0.5*(xi - xj)**2) assert(K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), (xi, xj)) K = update_kernel(K, RBF, (xi, xj)) expected = theta_1*exp(-0.5*(xi - xj)**2) assert(K == expected)
def test_kernel_2d_1(): L = u # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * exp(-0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xj, yj))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * exp(-0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (K == expected) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi), Tuple(xj, yj))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * exp(-0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (K == expected)
def test_kernel_3d_2(): L = phi * u + dx(u) + dy(u) + dz(dz(u)) # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi))) K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj))) expected = theta_1 * theta_2 * theta_3 * ( phi**3 + 1.0 * phi**2 * (-xi + xj) + 1.0 * phi**2 * (-yi + yj) + 1.0 * phi**2 * (-zi + zj) + 1.0 * phi * (xi - xj) * (yi - yj) + 1.0 * phi * (xi - xj) * (zi - zj) + 1.0 * phi * (yi - yj) * (zi - zj) - 1.0 * (xi - xj) * (yi - yj) * (zi - zj)) * exp(-0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) * exp(-0.5 * (zi - zj)**2) assert (simplify(K - expected) == 0) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xj, yj, zj))) K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj))) expected = theta_1 * theta_2 * theta_3 * ( phi**3 + 1.0 * phi**2 * (xi - xj) + 1.0 * phi**2 * (yi - yj) + 1.0 * phi**2 * (zi - zj) + 1.0 * phi * (xi - xj) * (yi - yj) + 1.0 * phi * (xi - xj) * (zi - zj) + 1.0 * phi * (yi - yj) * (zi - zj) + 1.0 * (xi - xj) * (yi - yj) * (zi - zj)) * exp(-0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) * exp(-0.5 * (zi - zj)**2) assert (simplify(K - expected) == 0) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi, zi), Tuple(xj, yj, zj))) K = update_kernel(K, RBF, ((xi, yi, zi), (xj, yj, zj))) expected = theta_1 * theta_2 * theta_3 * ( phi**2 + 2.0 * phi * ((zi - zj)**2 - 1) - 1.0 * (xi - xj)**2 - 2.0 * (xi - xj) * (yi - yj) - 1.0 * (yi - yj)**2 + 1.0 * (zi - zj)**4 - 6.0 * (zi - zj)**2 + 5.0) * exp(-0.5 * (xi - xj)**2) * exp( -0.5 * (yi - yj)**2) * exp(-0.5 * (zi - zj)**2) assert (simplify(K - expected) == 0)
def test_kernel_2d_2(): L = phi * u + dx(u) + dy(dy(u)) # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * (phi**2 - 1.0 * phi * (xi - xj) - 1.0 * phi * (yi - yj) + 1.0 * (xi - xj) * (yi - yj)) * exp( -0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (simplify(K - expected) == 0) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xj, yj))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * (phi**2 + 1.0 * phi * (xi - xj) + 1.0 * phi * (yi - yj) + 1.0 * (xi - xj) * (yi - yj)) * exp( -0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (simplify(K - expected) == 0) # ... # ... K = evaluate(L, u, Kernel('K'), (Tuple(xi, yi), Tuple(xj, yj))) K = update_kernel(K, RBF, ((xi, yi), (xj, yj))) expected = theta_1 * theta_2 * (phi**2 + 2.0 * phi * ((yi - yj)**2 - 1) - 1.0 * (xi - xj)**2 + 1.0 * (yi - yj)**4 - 6.0 * (yi - yj)**2 + 4.0) * exp( -0.5 * (xi - xj)**2) * exp(-0.5 * (yi - yj)**2) assert (simplify(K - expected) == 0)