def run_many(self, positions, use_random_symmetry=True): """Compute the policy and value output for given positions. Args: positions: A list of positions for go board status use_random_symmetry: Apply random symmetry (defined in symmetries.py) to the extracted features (defined in features.py) of the given positions Returns: probabilities, value: The policy and value outputs (defined in dualnet_model.py) """ def _extract_features(positions): return features.extract_features(self.hparams.board_size, positions) processed = list(map(_extract_features, positions)) # processed = [ # features.extract_features(self.hparams.board_size, p) for p in positions] if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) # feed_dict is a dict object to provide the input examples for the step of # inference. sess.run() returns the inference predictions (indicated by # self.inference_output) of the given input as outputs outputs = self.sess.run(self.inference_output, feed_dict={self.inference_input: processed}) probabilities, value = outputs['policy_output'], outputs[ 'value_output'] if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( self.hparams.board_size, syms_used, probabilities) return probabilities, value
def run_many(self, positions, use_random_symmetry=True): processed = list(map(features.extract_features, positions)) # print(processed[0].shape) if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) # processed: list [] of (18, N, N) processed = [ np.reshape(item, (1, 18, go.N, go.N)) for item in processed ] processed = np.concatenate(processed, axis=0).astype(np.float32) if len(processed.shape) == 3: processed = np.expand_dims(processed, 0) batch = torch.from_numpy(processed) if self.cuda: batch = batch.cuda() outputs = self.model(batch) probabilities, value = outputs['pi'], outputs['V'] if self.cuda: probabilities = probabilities.cpu() value = value.cpu() probabilities = probabilities.detach().numpy() value = value.detach().numpy() if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value.flatten()
def run_many(self, positions, use_random_symmetry=True): """Compute the policy and value output for given positions. Args: positions: A list of positions for go board status use_random_symmetry: Apply random symmetry (defined in symmetries.py) to the extracted features (defined in features.py) of the given positions Returns: probabilities, value: The policy and value outputs (defined in dualnet_model.py) """ def _extract_features(positions): return features.extract_features(self.hparams.board_size, positions) processed = list(map(_extract_features, positions)) # processed = [ # features.extract_features(self.hparams.board_size, p) for p in positions] if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat(processed) # feed_dict is a dict object to provide the input examples for the step of # inference. sess.run() returns the inference predictions (indicated by # self.inference_output) of the given input as outputs outputs = self.sess.run( self.inference_output, feed_dict={self.inference_input: processed}) probabilities, value = outputs['policy_output'], outputs['value_output'] if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( self.hparams.board_size, syms_used, probabilities) return probabilities, value
def run_batch_test(self, position, batch_size, use_random_symmetry=True): """Test batch inference execution to ensure proper IPU setup without C++ """ positions = [position] processed = list(map(features_lib.extract_features, positions)) if FLAGS.use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) position = processed[0] s = position.shape input_shape = [s[0], s[1], s[2]] x_data = np.zeros(input_shape, np.float32) outputs = self.sess.run( self.inference_output, feed_dict={self.inference_input: [x_data] * batch_size}) probabilities, value = outputs['policy_output'], outputs[ 'value_output'] if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value
def run_many(self, positions, use_random_symmetry=True): processed = list(map(features.extract_features, positions)) if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) outputs = self.sess.run(self.inference_output, feed_dict={self.inference_input['pos_tensor']: processed}) probabilities, value = outputs['policy_output'], outputs['value_output'] if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value
def run_many(self, positions, use_random_symmetry=True): processed = list(map(features.extract_features, positions)) if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) outputs = self.sess.run(self.inference_output, feed_dict={self.inference_input: processed}) probabilities, value = outputs['policy_output'], outputs['value_output'] if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value
def run_many(self, positions): f = get_features() processed = [features_lib.extract_features(p, f) for p in positions] if FLAGS.use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) outputs = self.sess.run(self.inference_output, feed_dict={self.inference_input: processed}) probabilities, value = outputs['policy_output'], outputs['value_output'] if FLAGS.use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value
def run_many(self, positions, use_random_symmetry=True): processed = list(map(features.extract_features, positions)) if use_random_symmetry: syms_used, processed = symmetries.randomize_symmetries_feat( processed) processed = np.array(processed) processed = np.moveaxis(processed, -1, 1) processed = torch.from_numpy(processed) probabilities, value, logits = self.model(processed.float()) probabilities = probabilities.detach().cpu().numpy() value = value.detach().cpu().numpy() value = np.squeeze(value, axis=1) if use_random_symmetry: probabilities = symmetries.invert_symmetries_pi( syms_used, probabilities) return probabilities, value