Example #1
0
def test_terminal_expr_bilinear_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)
    nn    = NormalVector('nn')

    V = VectorFunctionSpace('V', domain)

    u,u1,u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v,v1,v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    int_0 = lambda expr: integral(domain , expr)
    int_1 = lambda expr: integral(B1, expr)

    a = BilinearForm((u,v), int_0(dot(u,v)))
    print(TerminalExpr(a))
    print('')

    # ...
    a = BilinearForm((u,v), int_0(inner(grad(u),grad(v))))
    print(TerminalExpr(a))
    print('')
    # ...

    # ...
    a = BilinearForm((u,v), int_0(dot(u,v) + inner(grad(u),grad(v))))
    print(TerminalExpr(a))
    print('')
Example #2
0
def test_bilinear_expr_2d_2():

    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)

    V = VectorFunctionSpace('V', domain)

    u,u1,u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v,v1,v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    a = BilinearExpr((u,v), dot(u,v))
    print(a)
    print(a.expr)
    print(a(u1,v1))
    # TODO
#    print(a(u1+u2,v1+v2))
    print('')
    # ...

    # ...
    a1 = BilinearExpr((u,v), dot(u,v))
    a2 = BilinearExpr((u,v), inner(grad(u),grad(v)))
    print(a1(u1,v1) + a2(u2,v2))
    print('')
Example #3
0
def test_bilinear_form_2d_4():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)

    V = VectorFunctionSpace('V', domain)

    u,u1,u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v,v1,v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    int_0 = lambda expr: integral(domain , expr)
    int_1 = lambda expr: integral(B1, expr)
    # ...
    a = BilinearForm((u,v), int_0(dot(u,v)))
    assert(a.is_symmetric)
    # ...

    # ...
    a = BilinearForm((u,v), int_0(inner(grad(u), grad(v))))
    assert(a.is_symmetric)
Example #4
0
def test_user_function_2d_1():

    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)

    # right hand side
    f = Function('f')

    V = ScalarFunctionSpace('V', domain)

    u,v = [element_of(V, name=i) for i in ['u', 'v']]

    int_0 = lambda expr: integral(domain , expr)

    # ...
    expr = dot(grad(u), grad(v)) + f(x,y) * u * v
    a = BilinearForm((v,u), int_0(expr))

    print(a)
    print(TerminalExpr(a))
    print('')
    # ...

    # ...
    expr = f(x,y) * v
    l = LinearForm(v, int_0(expr))

    print(l)
    print(TerminalExpr(l))
    print('')
Example #5
0
def test_functional_2d_1():

    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)

    V = ScalarFunctionSpace('V', domain)
    F = element_of(V, name='F')

    int_0 = lambda expr: integral(domain , expr)

    # ...
    expr = x*y
    a = Functional(int_0(expr), domain)

    print(a)
    print(TerminalExpr(a))
    print('')
    # ...

    # ...
    expr = F - cos(2*pi*x)*cos(3*pi*y)
    expr = dot(grad(expr), grad(expr))
    a = Functional(int_0(expr), domain)

    print(a)
    print(TerminalExpr(a))
    print('')
Example #6
0
def test_linearize_form_2d_4():
    domain  = Domain('Omega', dim=2)
    Gamma_N = Boundary(r'\Gamma_N', domain)

    x,y = domain.coordinates

    V = ScalarFunctionSpace('V', domain)

    v  = element_of(V, name='v')
    u  = element_of(V, name='u')
    du = element_of(V, name='du')

    int_0 = lambda expr: integral(domain , expr)
    int_1 = lambda expr: integral(Gamma_N, expr)

    g = Tuple(cos(pi*x)*sin(pi*y),
              sin(pi*x)*cos(pi*y))

    expr = dot(grad(v), grad(u)) - 4.*exp(-u)*v # + v*trace_1(g, Gamma_N)

    l = LinearForm(v, int_0(expr) )

    # linearising l around u, using du
    a = linearize(l, u, trials=du)

    assert a(du, v) == int_0(dot(grad(v), grad(du)) + 4.*exp(-u) * du * v)
Example #7
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)

    U = VectorFunctionSpace('U', domain)
    W = ScalarFunctionSpace('W', domain)

    # Test functions
    v   = element_of(U, name='v')
    phi = element_of(W, name='phi')
    q   = element_of(W, name='q')

    # Steady-state fields
    U_0   = element_of(U, name='U_0')
    Rho_0 = element_of(W, name='Rho_0')
    P_0   = element_of(W, name='P_0')

    # Trial functions (displacements from steady-state)
    d_u   = element_of(U, name='d_u')
    d_rho = element_of(W, name='d_rho')
    d_p   = element_of(W, name='d_p')

    # Shortcut
    int_0 = lambda expr: integral(domain , expr)

    # The Euler equations are a system of three non-linear equations; for each of
    # them we create a linear form in the test functions (phi, v, q) respectively.
    e1 = div(Rho_0 * U_0)
    l1 = LinearForm(phi, int_0(e1 * phi))

    e2 = Rho_0 * convect(U_0, U_0) + grad(P_0)
    l2 = LinearForm(v, int_0(dot(e2, v)))

    e3 = div(P_0 * U_0)
    l3 = LinearForm(q, int_0(e3 * q))
    # ...

    # Linearize l1, l2 and l3 separately
    a1 = linearize(l1, fields=[Rho_0, U_0     ], trials=[d_rho, d_u     ])
    a2 = linearize(l2, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])
    a3 = linearize(l3, fields=[       U_0, P_0], trials=[       d_u, d_p])

    # Check individual bilinear forms
    d_e1 = div(U_0 * d_rho + Rho_0 * d_u)
    d_e2 = d_rho * convect(U_0, U_0) + \
           Rho_0 * convect(d_u, U_0) + \
           Rho_0 * convect(U_0, d_u) + grad(d_p)
    d_e3 = div(d_p * U_0 + P_0 * d_u)

    assert a1([d_rho, d_u     ], phi) == int_0(d_e1 * phi)
    assert a2([d_rho, d_u, d_p], v  ) == int_0(dot(d_e2, v))
    assert a3([       d_u, d_p], q  ) == int_0(d_e3 * q)

    # Linearize linear form of system: l = l1 + l2 + l3
    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])

    # Check composite linear form
    assert a([d_rho, d_u, d_p], [phi, v, q]) == \
            int_0(d_e1 * phi + dot(d_e2, v) + d_e3 * q)
Example #8
0
def test_equation_2d_4():

    V = VectorFunctionSpace('V', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    x, y = domain.coordinates

    B1 = Boundary(r'\Gamma_1', domain)

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    # ... bilinear/linear forms
    a1 = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))

    f = Matrix([x * y, sin(pi * x) * sin(pi * y)])
    l1 = LinearForm(v, int_0(dot(f, v)))
    # ...

    # ...
    bc = EssentialBC(u, 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
    # ...

    # ...
    bc = EssentialBC(u[0], 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
    # ...

    # ...
    nn = NormalVector('nn')
    bc = EssentialBC(dot(u, nn), 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
Example #9
0
def test_equation_2d_3():

    V = ScalarFunctionSpace('V', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')

    x, y = domain.coordinates

    B1 = Boundary(r'\Gamma_1', domain)

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    # ... bilinear/linear forms
    a1 = BilinearForm((v, u), int_0(dot(grad(v), grad(u))))
    a2 = BilinearForm((v, u), int_0(v * u))

    l1 = LinearForm(v, int_0(x * y * v))
    l2 = LinearForm(v, int_0(cos(x + y) * v))
    # ...

    # ...
    bc = EssentialBC(u, 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
    # ...

    # ...
    nn = NormalVector('nn')
    bc = EssentialBC(dot(grad(u), nn), 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
Example #10
0
def test_linearize_expr_2d_1():
    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    V1 = ScalarFunctionSpace('V1', domain)
    W1 = VectorFunctionSpace('W1', domain)

    v1 = element_of(V1, name='v1')
    w1 = element_of(W1, name='w1')

    alpha = Constant('alpha')

    F = element_of(V1, name='F')
    G = element_of(W1, 'G')


    # ...
    l = LinearExpr(v1, F**2*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, dot(grad(F), grad(F))*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, exp(-F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F**2)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, F**2*dot(grad(F), grad(v1)))
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(w1, dot(rot(G), grad(G))*w1)
    a = linearize(l, G, trials='u1')
    print(a)
Example #11
0
def test_evaluation_2d_1():
    domain = Domain('Omega', dim=2)
    B_neumann = Boundary(r'\Gamma_1', domain)

    V = FunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    p, q = [TestFunction(V, name=i) for i in ['p', 'q']]
    u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']]

    alpha = Constant('alpha')

    x, y = V.coordinates
    F = Field('F', space=V)

    a1 = BilinearForm((p, q), dot(grad(p), grad(q)))
    m = BilinearForm((p, q), p * q)
    a2 = BilinearForm((p, q), a1(p, q) + alpha * m(p, q))
    a3 = BilinearForm((u, v), rot(u) * rot(v) + alpha * div(u) * div(v))

    a11 = BilinearForm((v, u), inner(grad(v), grad(u)))
    a12 = BilinearForm((v, p), div(v) * p)
    a4 = BilinearForm(((v, q), (u, p)), a11(v, u) - a12(v, p) + a12(u, q))

    l0 = LinearForm(p, F * p)
    l_neu = LinearForm(p, p * trace_1(grad(F), B_neumann))
    l = LinearForm(p, l0(p) + l_neu(p))

    # ...
    print(a1)
    print(evaluate(a1))
    print('')
    # ...

    # ...
    print(a2)
    print(evaluate(a2))
    print('')
    # ...

    # ...
    print(a3)
    print(evaluate(a3))
    print('')
    # ...

    # ...
    print(a4)
    print(evaluate(a4))
    print('')
    # ...

    # ...
    print(l)
    print(evaluate(l))
    print('')
Example #12
0
def test_linearize_2d_1():
    domain = Domain('Omega', dim=DIM)
    x, y = domain.coordinates

    V1 = FunctionSpace('V1', domain)
    W1 = VectorFunctionSpace('W1', domain)

    v1 = TestFunction(V1, name='v1')
    w1 = VectorTestFunction(W1, name='w1')

    alpha = Constant('alpha')

    F = Field('F', space=V1)
    G = VectorField(W1, 'G')

    # ...
    l = LinearForm(v1, F**2 * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, dot(grad(F), grad(F)) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, exp(-F) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, cos(F) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, cos(F**2) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, F**2 * dot(grad(F), grad(v1)), check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(w1, dot(rot(G), grad(G)) * w1, check=True)
    a = linearize(l, G, trials='u1')
    print(a)
Example #13
0
def test_interface_2d_1():

    # ...
    def two_patches():

        from sympde.topology import InteriorDomain
        from sympde.topology import Connectivity, Interface

        A = Square('A')
        B = Square('B')

        A = A.interior
        B = B.interior

        connectivity = Connectivity()

        bnd_A_1 = Boundary(r'\Gamma_1', A, axis=0, ext=-1)
        bnd_A_2 = Boundary(r'\Gamma_2', A, axis=0, ext=1)
        bnd_A_3 = Boundary(r'\Gamma_3', A, axis=1, ext=-1)
        bnd_A_4 = Boundary(r'\Gamma_4', A, axis=1, ext=1)

        bnd_B_1 = Boundary(r'\Gamma_1', B, axis=0, ext=-1)
        bnd_B_2 = Boundary(r'\Gamma_2', B, axis=0, ext=1)
        bnd_B_3 = Boundary(r'\Gamma_3', B, axis=1, ext=-1)
        bnd_B_4 = Boundary(r'\Gamma_4', B, axis=1, ext=1)

        connectivity['I'] = Interface('I', bnd_A_2, bnd_B_1)

        Omega = Domain('Omega',
                       interiors=[A, B],
                       boundaries=[
                           bnd_A_1, bnd_A_2, bnd_A_3, bnd_A_4, bnd_B_1,
                           bnd_B_2, bnd_B_3, bnd_B_4
                       ],
                       connectivity=connectivity)

        return Omega

    # ...

    # create a domain with an interface
    domain = two_patches()
    interfaces = domain.interfaces

    V = ScalarFunctionSpace('V', domain)

    u, v = elements_of(V, names='u, v')

    print(integral(interfaces, u * v))

    expr = integral(domain, dot(grad(v), grad(u)))
    expr += integral(interfaces, -avg(Dn(u)) * jump(v) + avg(Dn(v)) * jump(u))
    a = BilinearForm((u, v), expr)
    print(a)
Example #14
0
def test_interface_integral_1():

    # ...
    A = Square('A')
    B = Square('B')

    domain = A.join(B,
                    name='domain',
                    bnd_minus=A.get_boundary(axis=0, ext=1),
                    bnd_plus=B.get_boundary(axis=0, ext=-1))
    # ...

    x, y = domain.coordinates

    V = ScalarFunctionSpace('V', domain, kind=None)
    assert (V.is_broken)

    u, v = elements_of(V, names='u, v')

    # ...
    I = domain.interfaces
    # ...

    #    expr = minus(Dn(u))
    #    print(expr)
    #    import sys; sys.exit(0)

    # ... bilinear forms
    #    a = BilinearForm((u,v), integral(domain, u*v))
    #    a = BilinearForm((u,v), integral(domain, dot(grad(u),grad(v))))
    #    a = BilinearForm((u,v), integral(I, jump(u) * jump(v)))
    #    a = BilinearForm((u,v), integral(I, jump(Dn(u)) * jump(v)))

    #    a = BilinearForm((u,v), integral(domain, dot(grad(u),grad(v)))
    #                          + integral(I,      jump(u) * jump(v)))

    # Nitsch
    kappa = Constant('kappa')
    expr_I = (-jump(u) * jump(Dn(v)) + kappa * jump(u) * jump(v) +
              plus(Dn(u)) * minus(v) + minus(Dn(u)) * plus(v))
    a = BilinearForm(
        (u, v),
        integral(domain, dot(grad(u), grad(v))) + integral(I, expr_I))

    #    # TODO BUG
    #    bnd_A = A.get_boundary(axis=0, ext=1)
    #
    #    a = BilinearForm((u,v), integral(domain, dot(grad(u),grad(v)))
    #                          + integral(I,      jump(u) * jump(v))
    #                          + integral(bnd_A,      dx(u)*v))

    expr = TerminalExpr(a)
    print(expr)
Example #15
0
def test_interface_integral_3():

    # ...
    A = Square('A')
    B = Square('B')
    C = Square('C')

    AB = A.join(B,
                name='AB',
                bnd_minus=A.get_boundary(axis=0, ext=1),
                bnd_plus=B.get_boundary(axis=0, ext=-1))

    domain = AB.join(C,
                     name='domain',
                     bnd_minus=B.get_boundary(axis=0, ext=1),
                     bnd_plus=C.get_boundary(axis=0, ext=-1))
    # ...

    x, y = domain.coordinates

    V = ScalarFunctionSpace('V', domain, kind=None)
    assert (V.is_broken)

    u, v = elements_of(V, names='u, v')

    # ...
    I = domain.interfaces
    #    print(I)
    #    print(integral(I, jump(u) * jump(v)))

    #    a = BilinearForm((u,v), integral(domain, u*v))
    #    a = BilinearForm((u,v), integral(domain, dot(grad(u),grad(v))))
    #    a = BilinearForm((u,v), integral(I, jump(u) * jump(v)))

    a = BilinearForm((u, v),
                     integral(domain, dot(grad(u), grad(v))) +
                     integral(I,
                              jump(u) * jump(v)))

    expr = TerminalExpr(a)
    print(expr)
    # ...

    # ... linear forms
    b = LinearForm(
        v,
        integral(domain,
                 sin(x + y) * v) + integral(I,
                                            cos(x + y) * jump(v)))

    expr = TerminalExpr(b)
    print(expr)
Example #16
0
def test_field_2d_1():
    print('============ test_field_2d_1 =============')

    #    x, y = domain.coordinates

    W = VectorFunctionSpace('W', domain)
    F = element_of(W, 'F')

    assert (dx(F) == Matrix([[dx(F[0]), dx(F[1])]]))

    # TODO not working yet => check it for VectorFunction also
    #    print(dx(x*F))

    expr = inner(grad(F), grad(F))
    print(expr)
Example #17
0
def test_tensorize_2d():
    domain = Domain('Omega', dim=DIM)

    V = FunctionSpace('V', domain)
    U = FunctionSpace('U', domain)
    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    v = TestFunction(V, name='v')
    u = TestFunction(U, name='u')
    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    x, y = domain.coordinates

    alpha = Constant('alpha')

    # ...
    expr = dot(grad(v), grad(u))
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = x * dx(v) * dx(u) + y * dy(v) * dy(u)
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = sin(x) * dx(v) * dx(u)
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    #    expr = rot(w1)*rot(t1) + div(w1)*div(t1)
    expr = rot(w1) * rot(t1)  #+ div(w1)*div(t1)
    a = BilinearForm((w1, t1), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
Example #18
0
def test_equation_2d_5():
    domain = Square()
    x, y = domain.coordinates

    f0 = Matrix([
        2 * pi**2 * sin(pi * x) * sin(pi * y),
        2 * pi**2 * sin(pi * x) * sin(pi * y)
    ])

    f1 = cos(pi * x) * cos(pi * y)

    W = VectorFunctionSpace('W', domain)
    V = ScalarFunctionSpace('V', domain)
    X = ProductSpace(W, V)

    F = element_of(W, name='F')
    G = element_of(V, name='G')

    u, v = [element_of(W, name=i) for i in ['u', 'v']]
    p, q = [element_of(V, name=i) for i in ['p', 'q']]

    int_0 = lambda expr: integral(domain, expr)

    a0 = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))
    print('     a0 done.')
    a1 = BilinearForm((q, p), int_0(p * q))
    print('     a1 done.')
    a = BilinearForm(((v, q), (u, p)), a0(v, u) + a1(q, p))
    print('     a  done.')

    l0 = LinearForm(v, int_0(dot(f0, v)))
    l1 = LinearForm(q, int_0(f1 * q))
    l = LinearForm((v, q), l0(v) + l1(q))

    print('****************************')
    bc = EssentialBC(u, 0, domain.boundary)
    equation = Equation(a, l, tests=[v, q], trials=[u, p], bc=bc)

    # ...
    print('=======')
    print(equation.lhs.expr)
    print('')
    # ...

    # ...
    print('=======')
    print(equation.rhs.expr)
    print('')
Example #19
0
def test_tensorize_2d_3():

    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    u, v = elements_of(V, names='u,v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    expr = integral(domain, dot(b, grad(v)) * dot(b, grad(u)))
    a = BilinearForm((u, v), expr)

    print(TensorExpr(a))
    print('')
Example #20
0
def test_compiler_3d_stokes():

    domain = Domain('Omega', dim=3)

    # ...
    #    by setting the space type, we cannot evaluate grad of Hdiv function, then
    #    ArgumentTypeError will be raised.
    #    In order to avoid this problem, we need first to declare our space as an
    #    undefined type.
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    with pytest.raises(ArgumentTypeError):
        expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    # ...

    # ...
    Hdiv = VectorFunctionSpace('V2', domain)
    L2 = ScalarFunctionSpace('V3', domain)

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    atoms = {
        u: DifferentialForm('u', index=2, dim=domain.dim),
        v: DifferentialForm('v', index=2, dim=domain.dim),
        p: DifferentialForm('p', index=3, dim=domain.dim),
        q: DifferentialForm('q', index=3, dim=domain.dim)
    }
    newexpr = ExteriorCalculusExpr(expr, tests=[v, q], atoms=atoms)
    print('===== BEFORE =====')
    print(newexpr)

    newexpr = augmented_expression(newexpr,
                                   tests=[v, q],
                                   atoms=atoms,
                                   weak=False)
    print('===== AFTER  =====')
    print(newexpr)
Example #21
0
def test_expr_mapping_2d():

    F = Mapping('F', DIM)
    patch = Domain('Omega', dim=DIM)
    domain = F(patch)

    V = FunctionSpace('V', domain)
    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    x, y = V.coordinates

    a = BilinearForm((v, u), dot(grad(v), grad(u)))
    assert (a.mapping is F)

    l = LinearForm(v, x * y * v)
    assert (l.mapping is F)
Example #22
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)
    x, y = domain.coordinates

    U = VectorFunctionSpace('U', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(U, name='v')
    phi = TestFunction(W, name='phi')
    q = TestFunction(W, name='q')

    U_0 = VectorField(U, name='U_0')
    Rho_0 = Field(W, name='Rho_0')
    P_0 = Field(W, name='P_0')

    # ...
    expr = div(Rho_0 * U_0) * phi
    l1 = LinearForm(phi, expr)

    expr = Rho_0 * dot(convect(U_0, grad(U_0)), v) + dot(grad(P_0), v)
    l2 = LinearForm(v, expr)

    expr = dot(U_0, grad(P_0)) * q + P_0 * div(U_0) * q
    l3 = LinearForm(q, expr)
    # ...

    a1 = linearize(l1, [Rho_0, U_0], trials=['d_rho', 'd_u'])
    print(a1)
    print('')

    a2 = linearize(l2, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a2)
    print('')

    a3 = linearize(l3, [P_0, U_0], trials=['d_p', 'd_u'])
    print(a3)
    print('')

    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a)

    export(a, 'steady_euler.png')
Example #23
0
def test_bilinear_form_2d_3():

    domain = Domain('Omega', dim=2)

    x, y = domain.coordinates

    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((u, v), inner(grad(v), grad(u)))
    b = BilinearForm((v, p), div(v) * p)
    A = BilinearForm(((u, p), (v, q)), a(v, u) - b(v, p) + b(u, q))

    export(A, 'stokes_2d.png')
Example #24
0
def test_terminal_expr_linear_2d_5(boundary=[r'\Gamma_1', r'\Gamma_3']):

    # ... abstract model
    domain = Square()

    V = ScalarFunctionSpace('V', domain)

    B_neumann = [domain.get_boundary(i) for i in boundary]
    if len(B_neumann) == 1:
        B_neumann = B_neumann[0]

    else:
        B_neumann = Union(*B_neumann)

    x, y = domain.coordinates
    nn = NormalVector('nn')

    F = element_of(V, name='F')

    v = element_of(V, name='v')
    u = element_of(V, name='u')

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B_neumann, expr)

    expr = dot(grad(v), grad(u))
    a = BilinearForm((v, u), int_0(expr))

    solution = cos(0.5 * pi * x) * cos(0.5 * pi * y)
    f = (1. / 2.) * pi**2 * solution

    expr = f * v
    l0 = LinearForm(v, int_0(expr))

    expr = v * dot(grad(solution), nn)
    l_B_neumann = LinearForm(v, int_1(expr))

    expr = l0(v) + l_B_neumann(v)
    l = LinearForm(v, expr)

    print(TerminalExpr(l))
    print('')
Example #25
0
def test_interface_integral_2():

    # ...
    A = Square('A')
    B = Square('B')

    domain = A.join(B,
                    name='domain',
                    bnd_minus=A.get_boundary(axis=0, ext=1),
                    bnd_plus=B.get_boundary(axis=0, ext=-1))
    # ...

    x, y = domain.coordinates

    V = ScalarFunctionSpace('V', domain, kind=None)
    assert (V.is_broken)

    u, u1, u2, u3 = elements_of(V, names='u, u1, u2, u3')
    v, v1, v2, v3 = elements_of(V, names='v, v1, v2, v3')

    # ...
    I = domain.interfaces

    a = BilinearForm((u, v), integral(domain, dot(grad(u), grad(v))))
    b = BilinearForm((u, v), integral(I, jump(u) * jump(v)))

    A = BilinearForm(((u1, u2), (v1, v2)),
                     a(u1, v1) + a(u2, v2) + b(u1, v1) + b(u2, v2) + b(u1, v2))
    B = BilinearForm(
        ((u1, u2, u3), (v1, v2, v3)),
        a(u1, v1) + a(u2, v2) + a(u3, v3) + b(u1, v1) + b(u2, v2) + b(u1, v2))

    print(TerminalExpr(A))
    print(TerminalExpr(B))
    # ...

    # ... linear forms
    b = LinearForm(v, integral(I, jump(v)))

    b = LinearForm((v1, v2), b(v1) + b(v2))
    expr = TerminalExpr(b)
    print(expr)
Example #26
0
def test_tensorize_2d_1():

    domain = Domain('Omega', dim=2)

    mu    = Constant('mu'   , is_real=True)

    V = ScalarFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain , expr)

    # ...
#    a = BilinearForm((u,v), u*v)
    a = BilinearForm((u,v), int_0(mu*u*v + dot(grad(u),grad(v))))
#    a = BilinearForm((u,v), dot(grad(u),grad(v)))
#    a = BilinearForm((u,v), dx(u)*v)
#    a = BilinearForm((u,v), laplace(u)*laplace(v))

    expr = TensorExpr(a, domain=domain)
    print(expr)
Example #27
0
def test_tensorize_2d_stokes():
    domain = Domain('Omega', dim=DIM)

    # ... abstract model
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a')
    b = BilinearForm((v, p), div(v) * p, name='b')
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A')
    # ...

    print(A)
    print(tensorize(A))
    print('')
Example #28
0
def test_logical_expr_3d_2():

    dim = 3
    domain = Domain('Omega', dim=dim)
    M = Mapping('M', dim=dim)

    mapped_domain = M(domain)

    V = ScalarFunctionSpace('V', domain, kind='h1')
    VM = ScalarFunctionSpace('VM', mapped_domain, kind='h1')

    u, v = elements_of(V, names='u,v')
    um, vm = elements_of(VM, names='u,v')

    J = M.jacobian

    a = dot(grad(um), grad(vm))
    e = LogicalExpr(a, mapping=M, dim=dim)

    assert e == dot(J.inv().T * grad(u), J.inv().T * grad(v))
Example #29
0
def test_calls_2d_2():

    domain = Square()

    V = FunctionSpace('V', domain)
    x, y = V.coordinates

    u, v = [TestFunction(V, name=i) for i in ['u', 'v']]
    Un = Field('Un', V)

    # ...
    a = BilinearForm((v, u), dot(grad(u), grad(v)))

    expr = a(v, Un)
    print(evaluate(expr, verbose=True))
    # ...

    # ...
    l = LinearForm(v, a(v, Un))

    print(evaluate(l, verbose=True))
Example #30
0
def test_essential_bc_1():
    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    v = element_of(V, name='v')
    w = element_of(W, name='w')

    B1 = Boundary(r'\Gamma_1', domain)
    nn = NormalVector('nn')

    # ... scalar case
    bc = EssentialBC(v, 0, B1)

    assert (bc.variable == v)
    assert (bc.order == 0)
    assert (bc.normal_component == False)
    assert (bc.index_component == None)
    # ...

    # ... scalar case
    bc = EssentialBC(dot(grad(v), nn), 0, B1)

    assert (bc.variable == v)
    assert (bc.order == 1)
    assert (bc.normal_component == False)
    assert (bc.index_component == None)
    # ...

    # ... vector case
    bc = EssentialBC(w, 0, B1)
    assert (bc.variable == w)
    assert (bc.order == 0)
    assert (bc.normal_component == False)
    assert (bc.index_component == [0, 1])
    # ...

    # ... vector case
    bc = EssentialBC(dot(w, nn), 0, B1)

    assert (bc.variable == w)
    assert (bc.order == 0)
    assert (bc.normal_component == True)
    assert (bc.index_component == None)
    # ...

    # ... vector case
    bc = EssentialBC(w[0], 0, B1)
    assert (bc.variable == w)
    assert (bc.order == 0)
    assert (bc.normal_component == False)
    assert (bc.index_component == [0])