def test_latex_2d_5(): DIM = 2 domain = Domain('Omega', dim=DIM) # ... abstract model W1 = VectorFunctionSpace('W1', domain) w1 = element_of(W1, name='w1') F = element_of(W1, 'F') int_0 = lambda expr: integral(domain, expr) # ... l1 = LinearForm(w1, int_0(dot(w1, F))) print(latex(l1)) print('') # ... # ... l2 = LinearForm(w1, int_0(rot(w1) * rot(F) + div(w1) * div(F))) print(latex(l2)) print('')
def test_evaluation_2d_1(): domain = Domain('Omega', dim=2) B_neumann = Boundary(r'\Gamma_1', domain) V = FunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) p, q = [TestFunction(V, name=i) for i in ['p', 'q']] u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']] alpha = Constant('alpha') x, y = V.coordinates F = Field('F', space=V) a1 = BilinearForm((p, q), dot(grad(p), grad(q))) m = BilinearForm((p, q), p * q) a2 = BilinearForm((p, q), a1(p, q) + alpha * m(p, q)) a3 = BilinearForm((u, v), rot(u) * rot(v) + alpha * div(u) * div(v)) a11 = BilinearForm((v, u), inner(grad(v), grad(u))) a12 = BilinearForm((v, p), div(v) * p) a4 = BilinearForm(((v, q), (u, p)), a11(v, u) - a12(v, p) + a12(u, q)) l0 = LinearForm(p, F * p) l_neu = LinearForm(p, p * trace_1(grad(F), B_neumann)) l = LinearForm(p, l0(p) + l_neu(p)) # ... print(a1) print(evaluate(a1)) print('') # ... # ... print(a2) print(evaluate(a2)) print('') # ... # ... print(a3) print(evaluate(a3)) print('') # ... # ... print(a4) print(evaluate(a4)) print('') # ... # ... print(l) print(evaluate(l)) print('')
def test_linearize_form_2d_1(): domain = Domain('Omega', dim=2) V = ScalarFunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) v, F, u = elements_of(V, names='v, F, u') w, G, m = elements_of(W, names='w, G, m') int_0 = lambda expr: integral(domain, expr) # ... l = LinearForm(v, int_0(F**2 * v)) a = linearize(l, F, trials=u) assert a(u, v) == int_0(2 * F * u * v) # ... # ... l = LinearForm(v, int_0(dot(grad(F), grad(F)) * v)) a = linearize(l, F, trials=u) assert a(u, v) == int_0(2 * dot(grad(F), grad(u)) * v) # ... # ... l = LinearForm(v, int_0(exp(-F) * v)) a = linearize(l, F, trials=u) assert a(u, v) == int_0(-exp(-F) * u * v) # ... # ... l = LinearForm(v, int_0(cos(F) * v)) a = linearize(l, F, trials=u) assert a(u, v) == int_0(-sin(F) * u * v) # ... # ... l = LinearForm(v, int_0(cos(F**2) * v)) a = linearize(l, F, trials=u) assert a(u, v) == int_0(-2 * F * sin(F**2) * u * v) # ... # ... l = LinearForm(v, int_0(F**2 * dot(grad(F), grad(v)))) a = linearize(l, F, trials=u) assert a(u, v) == int_0(2 * F * u * dot(grad(F), grad(v)) + F**2 * dot(grad(u), grad(v))) # ... # ... l = LinearForm(w, int_0(dot(rot(G), grad(G)) * w)) a = linearize(l, G, trials=m) assert a(m, w) == int_0((dot(rot(m), grad(G)) + dot(rot(G), grad(m))) * w)
def test_tensorize_2d(): domain = Domain('Omega', dim=DIM) V = FunctionSpace('V', domain) U = FunctionSpace('U', domain) W1 = VectorFunctionSpace('W1', domain) T1 = VectorFunctionSpace('T1', domain) v = TestFunction(V, name='v') u = TestFunction(U, name='u') w1 = VectorTestFunction(W1, name='w1') t1 = VectorTestFunction(T1, name='t1') x, y = domain.coordinates alpha = Constant('alpha') # ... expr = dot(grad(v), grad(u)) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = x * dx(v) * dx(u) + y * dy(v) * dy(u) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = sin(x) * dx(v) * dx(u) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... # expr = rot(w1)*rot(t1) + div(w1)*div(t1) expr = rot(w1) * rot(t1) #+ div(w1)*div(t1) a = BilinearForm((w1, t1), expr, name='a') print(a) print(tensorize(a)) print('')
def test_calculus_2d_1(): domain = Domain('Omega', dim=2) V = ScalarFunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']] f, g, h = elements_of(V, names='f, g, h') F, G, H = elements_of(W, names='F, G, H') # ... scalar gradient properties assert (grad(f + g) == grad(f) + grad(g)) assert (grad(alpha * h) == alpha * grad(h)) assert (grad(alpha * f + beta * g) == alpha * grad(f) + beta * grad(g)) assert (grad(f * g) == f * grad(g) + g * grad(f)) assert (grad(f / g) == -f * grad(g) / g**2 + grad(f) / g) assert (expand(grad(f * g * h)) == f * g * grad(h) + f * h * grad(g) + g * h * grad(f)) # ... # ... vector gradient properties assert (grad(F + G) == grad(F) + grad(G)) assert (grad(alpha * H) == alpha * grad(H)) assert (grad(alpha * F + beta * G) == alpha * grad(F) + beta * grad(G)) assert (grad(dot(F, G)) == convect(F, G) + convect(G, F) + cross(F, curl(G)) - cross(curl(F), G)) # ... # ... curl properties assert (curl(f + g) == curl(f) + curl(g)) assert (curl(alpha * h) == alpha * curl(h)) assert (curl(alpha * f + beta * g) == alpha * curl(f) + beta * curl(g)) # ... # ... laplace properties assert (laplace(f + g) == laplace(f) + laplace(g)) assert (laplace(alpha * h) == alpha * laplace(h)) assert (laplace(alpha * f + beta * g) == alpha * laplace(f) + beta * laplace(g)) # ... # ... divergence properties assert (div(F + G) == div(F) + div(G)) assert (div(alpha * H) == alpha * div(H)) assert (div(alpha * F + beta * G) == alpha * div(F) + beta * div(G)) assert (div(cross(F, G)) == -dot(F, curl(G)) + dot(G, curl(F))) # ... # ... rot properties assert (rot(F + G) == rot(F) + rot(G)) assert (rot(alpha * H) == alpha * rot(H)) assert (rot(alpha * F + beta * G) == alpha * rot(F) + beta * rot(G))
def test_linearize_expr_2d_1(): domain = Domain('Omega', dim=2) x,y = domain.coordinates V1 = ScalarFunctionSpace('V1', domain) W1 = VectorFunctionSpace('W1', domain) v1 = element_of(V1, name='v1') w1 = element_of(W1, name='w1') alpha = Constant('alpha') F = element_of(V1, name='F') G = element_of(W1, 'G') # ... l = LinearExpr(v1, F**2*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, dot(grad(F), grad(F))*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, exp(-F)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, cos(F)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, cos(F**2)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, F**2*dot(grad(F), grad(v1))) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(w1, dot(rot(G), grad(G))*w1) a = linearize(l, G, trials='u1') print(a)
def test_curldiv_2d(): domain = Square() W1 = VectorFunctionSpace('W1', domain) T1 = VectorFunctionSpace('T1', domain) w1 = VectorTestFunction(W1, name='w1') t1 = VectorTestFunction(T1, name='t1') mu = Constant('mu') # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + mu * div(w1) * div(t1), name='a') print(a) print(atomize(a)) print(evaluate(a))
def test_linearize_2d_1(): domain = Domain('Omega', dim=DIM) x, y = domain.coordinates V1 = FunctionSpace('V1', domain) W1 = VectorFunctionSpace('W1', domain) v1 = TestFunction(V1, name='v1') w1 = VectorTestFunction(W1, name='w1') alpha = Constant('alpha') F = Field('F', space=V1) G = VectorField(W1, 'G') # ... l = LinearForm(v1, F**2 * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, dot(grad(F), grad(F)) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, exp(-F) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, cos(F) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, cos(F**2) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, F**2 * dot(grad(F), grad(v1)), check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(w1, dot(rot(G), grad(G)) * w1, check=True) a = linearize(l, G, trials='u1') print(a)
def test_calls_2d(): domain = Domain('Omega', dim=DIM) V1 = FunctionSpace('V1', domain) V2 = FunctionSpace('V2', domain) U1 = FunctionSpace('U1', domain) U2 = FunctionSpace('U2', domain) W1 = VectorFunctionSpace('W1', domain) W2 = VectorFunctionSpace('W2', domain) T1 = VectorFunctionSpace('T1', domain) T2 = VectorFunctionSpace('T2', domain) v1 = TestFunction(V1, name='v1') v2 = TestFunction(V2, name='v2') u1 = TestFunction(U1, name='u1') u2 = TestFunction(U2, name='u2') w1 = VectorTestFunction(W1, name='w1') w2 = VectorTestFunction(W2, name='w2') t1 = VectorTestFunction(T1, name='t1') t2 = VectorTestFunction(T2, name='t2') V = ProductSpace(V1, V2) U = ProductSpace(U1, U2) x, y = V1.coordinates alpha = Constant('alpha') F = Field('F', space=V1) # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') expr = a1(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a1') expr = a1(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v2, u2) + a2(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v1, u2) print('> before = ', expr) expr = expr.subs(u2, u1) print('> after = ', expr) print('') expr = a1(v1, u2) + a1(v2, u2) print('> before = ', expr) expr = expr.subs(u2, u1) print('> after = ', expr) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v1, u2) + a2(v2, u1) a = BilinearForm(((v1, v2), (u1, u2)), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a') print(a) print(atomize(a)) print(evaluate(a)) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') a3 = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a3') a4 = BilinearForm((w1, u1), div(w1) * u1, name='a4') expr = a3(w2, t2) + a2(v2, u2) + a4(w2, u2) a = BilinearForm(((w2, v2), (t2, u2)), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) # ... # ... a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), name='a1') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') # ... # ... a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), name='a1') print('================================') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') # ... # ... l1 = LinearForm(v1, x * y * v1, name='11') expr = l1(v2) l = LinearForm(v2, expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(v2, cos(x + y) * v2, name='l2') expr = l1(u1) + l2(u2) l = LinearForm((u1, u2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(v2, cos(x + y) * v2, name='l2') expr = l1(u1) + alpha * l2(u2) l = LinearForm((u1, u2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(w1, div(w1), name='l2') expr = l1(v2) + l2(w2) l = LinearForm((v2, w2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... I1 = Integral(x * y, domain, name='I1') print(I1) print(atomize(I1)) print(evaluate(I1)) # ... # ... expr = F - cos(2 * pi * x) * cos(3 * pi * y) expr = dot(grad(expr), grad(expr)) I2 = Integral(expr, domain, name='I2') print(I2) print(atomize(I2)) print(evaluate(I2)) # ... # ... expr = F - cos(2 * pi * x) * cos(3 * pi * y) expr = dot(grad(expr), grad(expr)) I2 = Integral(expr, domain, name='I2') print(I2) print(atomize(I2)) print(evaluate(I2)) # ... # ... stokes V = VectorFunctionSpace('V', domain) W = FunctionSpace('W', domain) v = VectorTestFunction(V, name='v') u = VectorTestFunction(V, name='u') p = TestFunction(W, name='p') q = TestFunction(W, name='q') a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a') b = BilinearForm((v, p), div(v) * p, name='b') A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A') print(A) print(atomize(A)) print(evaluate(A))
def test_bilinearity_2d_2(): domain = Domain('Omega', dim=DIM) V1 = FunctionSpace('V1', domain) V2 = FunctionSpace('V2', domain) U1 = FunctionSpace('U1', domain) U2 = FunctionSpace('U2', domain) W1 = VectorFunctionSpace('W1', domain) W2 = VectorFunctionSpace('W2', domain) T1 = VectorFunctionSpace('T1', domain) T2 = VectorFunctionSpace('T2', domain) v1 = TestFunction(V1, name='v1') v2 = TestFunction(V2, name='v2') u1 = TestFunction(U1, name='u1') u2 = TestFunction(U2, name='u2') w1 = VectorTestFunction(W1, name='w1') w2 = VectorTestFunction(W2, name='w2') t1 = VectorTestFunction(T1, name='t1') t2 = VectorTestFunction(T2, name='t2') V = ProductSpace(V1, V2) U = ProductSpace(U1, U2) x, y = V1.coordinates alpha = Constant('alpha') F = Field('F', space=V1) # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a = BilinearForm((v2, u2), a1(v2, u2), check=True) # ... # ... a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True) # ... # ... a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True) a = BilinearForm((v2, u2), a1(v2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a = BilinearForm((v2, u2), a1(v2, u2) + a2(v2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a = BilinearForm(((v1, v2), (u1, u2)), a1(v1, u2) + a2(v2, u1), check=True) # ... # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a3 = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), check=True) a4 = BilinearForm((w1, u1), div(w1) * u1, check=True) a = BilinearForm(((w2, v2), (t2, u2)), a3(w2, t2) + a2(v2, u2) + a4(w2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), check=True) # ... # ... a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), check=True) # ... # ... stokes V = VectorFunctionSpace('V', domain) W = FunctionSpace('W', domain) v = VectorTestFunction(V, name='v') u = VectorTestFunction(V, name='u') p = TestFunction(W, name='p') q = TestFunction(W, name='q') a = BilinearForm((v, u), inner(grad(v), grad(u)), check=True) b = BilinearForm((v, p), div(v) * p, check=True) A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), check=True) # ... ################################ # non bilinear forms ################################ # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)) + v1, check=True) # ... # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), v1**2 * u1, check=True) # ... # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), dot(grad(v1), grad(v1)), check=True)