Example #1
0
 def __mul__(self, other):
     """BraBase*other"""
     from sympsi.innerproduct import InnerProduct
     if isinstance(other, KetBase):
         return InnerProduct(self, other)
     else:
         return Expr.__mul__(self, other)
Example #2
0
 def __rmul__(self, other):
     """other*KetBase"""
     from sympsi.innerproduct import InnerProduct
     if isinstance(other, BraBase):
         return InnerProduct(other, self)
     else:
         return Expr.__rmul__(self, other)
Example #3
0
def rep_innerproduct(expr, **options):
    """
    Returns an innerproduct like representation (e.g. ``<x'|x>``) for the
    given state.

    Attempts to calculate inner product with a bra from the specified
    basis. Should only be passed an instance of KetBase or BraBase

    Parameters
    ==========

    expr : KetBase or BraBase
        The expression to be represented

    Examples
    ========

    >>> from sympsi.represent import rep_innerproduct
    >>> from sympsi.cartesian import XOp, XKet, PxOp, PxKet
    >>> rep_innerproduct(XKet())
    DiracDelta(x - x_1)
    >>> rep_innerproduct(XKet(), basis=PxOp())
    sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
    >>> rep_innerproduct(PxKet(), basis=XOp())
    sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))

    """

    if not isinstance(expr, (KetBase, BraBase)):
        raise TypeError("expr passed is not a Bra or Ket")

    basis = get_basis(expr, **options)

    if not isinstance(basis, StateBase):
        raise NotImplementedError("Can't form this representation!")

    if not "index" in options:
        options["index"] = 1

    basis_kets = enumerate_states(basis, options["index"], 2)

    if isinstance(expr, BraBase):
        bra = expr
        ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0])
    else:
        bra = (basis_kets[1].dual
               if basis_kets[0] == expr else basis_kets[0].dual)
        ket = expr

    prod = InnerProduct(bra, ket)
    result = prod.doit()

    format = options.get('format', 'sympy')
    return expr._format_represent(result, format)
Example #4
0
def qapply_Mul(e, **options):

    ip_doit = options.get('ip_doit', True)

    args = list(e.args)

    # If we only have 0 or 1 args, we have nothing to do and return.
    if len(args) <= 1 or not isinstance(e, Mul):
        return e
    rhs = args.pop()
    lhs = args.pop()

    # Make sure we have two non-commutative objects before proceeding.
    if (sympify(rhs).is_commutative and not isinstance(rhs, Wavefunction)) or \
            (sympify(lhs).is_commutative and not isinstance(lhs, Wavefunction)):
        return e

    # For a Pow with an integer exponent, apply one of them and reduce the
    # exponent by one.
    if isinstance(lhs, Pow) and lhs.exp.is_Integer:
        args.append(lhs.base**(lhs.exp - 1))
        lhs = lhs.base

    # Pull OuterProduct apart
    if isinstance(lhs, OuterProduct):
        args.append(lhs.ket)
        lhs = lhs.bra

    # Call .doit() on Commutator/AntiCommutator.
    if isinstance(lhs, (Commutator, AntiCommutator)):
        comm = lhs.doit()
        if isinstance(comm, Add):
            return qapply(
                e.func(*(args + [comm.args[0], rhs])) +
                e.func(*(args + [comm.args[1], rhs])), **options)
        else:
            return qapply(e.func(*args) * comm * rhs, **options)

    # Apply tensor products of operators to states
    if isinstance(lhs, TensorProduct) and all([isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args]) and \
            isinstance(rhs, TensorProduct) and all([isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args]) and \
            len(lhs.args) == len(rhs.args):
        result = TensorProduct(*[
            qapply(lhs.args[n] * rhs.args[n], **options)
            for n in range(len(lhs.args))
        ]).expand(tensorproduct=True)
        return qapply_Mul(e.func(*args), **options) * result

    # Now try to actually apply the operator and build an inner product.
    try:
        result = lhs._apply_operator(rhs, **options)
    except (NotImplementedError, AttributeError):
        try:
            result = rhs._apply_operator(lhs, **options)
        except (NotImplementedError, AttributeError):
            if isinstance(lhs, BraBase) and isinstance(rhs, KetBase):
                result = InnerProduct(lhs, rhs)
                if ip_doit:
                    result = result.doit()
            else:
                result = None

    # TODO: I may need to expand before returning the final result.
    if result == 0:
        return S.Zero
    elif result is None:
        if len(args) == 0:
            # We had two args to begin with so args=[].
            return e
        else:
            return qapply_Mul(e.func(*(args + [lhs])), **options) * rhs
    elif isinstance(result, InnerProduct):
        return result * qapply_Mul(e.func(*args), **options)
    else:  # result is a scalar times a Mul, Add or TensorProduct
        return qapply(e.func(*args) * result, **options)