def test_Term(): a = Term(4*x*y**2/z/t**3) b = Term(2*x**3*y**5/t**3) assert a == Term(4, Factors({x: 1, y: 2}), Factors({z: 1, t: 3})) assert b == Term(2, Factors({x: 3, y: 5}), Factors({t: 3})) assert a.as_expr() == 4*x*y**2/z/t**3 assert b.as_expr() == 2*x**3*y**5/t**3 assert a.inv() == Term(S(1)/4, Factors({z: 1, t: 3}), Factors({x: 1, y: 2})) assert b.inv() == Term(S(1)/2, Factors({t: 3}), Factors({x: 3, y: 5})) assert a.mul(b) == a*b == Term(8, Factors({x: 4, y: 7}), Factors({z: 1, t: 6})) assert a.quo(b) == a/b == Term(2, Factors({}), Factors({x: 2, y: 3, z: 1})) assert a.pow(3) == a**3 == Term(64, Factors({x: 3, y: 6}), Factors({z: 3, t: 9})) assert b.pow(3) == b**3 == Term(8, Factors({x: 9, y: 15}), Factors({t: 9})) assert a.pow(-3) == a**(-3) == Term(S(1)/64, Factors({z: 3, t: 9}), Factors({x: 3, y: 6})) assert b.pow(-3) == b**(-3) == Term(S(1)/8, Factors({t: 9}), Factors({x: 9, y: 15})) assert a.gcd(b) == Term(2, Factors({x: 1, y: 2}), Factors({t: 3})) assert a.lcm(b) == Term(4, Factors({x: 3, y: 5}), Factors({z: 1, t: 3})) a = Term(4*x*y**2/z/t**3) b = Term(2*x**3*y**5*t**7) assert a.mul(b) == Term(8, Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Term((2*x + 2)**3) == Term(8, Factors({x + 1: 3}), Factors({})) assert Term((2*x + 2)*(3*x + 6)**2) == Term(18, Factors({x + 1: 1, x + 2: 2}), Factors({}))
def test_Factors(): assert Factors() == Factors({}) == Factors(1) assert Factors().as_expr() == S.One assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4 a = Factors({x: 5, y: 3, z: 7}) b = Factors({y: 4, z: 3, t: 10}) assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10}) assert a.div(b) == divmod(a, b) == \ (Factors({x: 5, z: 4}), Factors({y: 1, t: 10})) assert a.quo(b) == a/b == Factors({x: 5, z: 4}) assert a.rem(b) == a % b == Factors({y: 1, t: 10}) assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21}) assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30}) assert a.gcd(b) == Factors({y: 3, z: 3}) assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10}) a = Factors({x: 4, y: 7, t: 7}) b = Factors({z: 1, t: 3}) assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x
def test_Factors(): assert Factors() == Factors({}) == Factors(S(1)) assert Factors().as_expr() == S.One assert Factors({ x: 2, y: 3, sin(x): 4 }).as_expr() == x**2 * y**3 * sin(x)**4 assert Factors(S.Infinity) == Factors({oo: 1}) assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1}) a = Factors({x: 5, y: 3, z: 7}) b = Factors({y: 4, z: 3, t: 10}) assert a.mul(b) == a * b == Factors({x: 5, y: 7, z: 10, t: 10}) assert a.div(b) == divmod(a, b) == \ (Factors({x: 5, z: 4}), Factors({y: 1, t: 10})) assert a.quo(b) == a / b == Factors({x: 5, z: 4}) assert a.rem(b) == a % b == Factors({y: 1, t: 10}) assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21}) assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30}) assert a.gcd(b) == Factors({y: 3, z: 3}) assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10}) a = Factors({x: 4, y: 7, t: 7}) b = Factors({z: 1, t: 3}) assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Factors(sqrt(2) * x).as_expr() == sqrt(2) * x assert Factors(-I) * I == Factors() assert Factors({S(-1): S(3)})*Factors({S(-1): S(1), I: S(5)}) == \ Factors(I) assert Factors(S(2)**x).div(S(3)**x) == \ (Factors({S(2): x}), Factors({S(3): x})) assert Factors(2**(2*x + 2)).div(S(8)) == \ (Factors({S(2): 2*x + 2}), Factors({S(8): S(1)})) # coverage # /!\ things break if this is not True assert Factors({S(-1): S(3) / 2}) == Factors({I: S.One, S(-1): S.One}) assert Factors({ I: S(1), S(-1): S(1) / 3 }).as_expr() == I * (-1)**(S(1) / 3) assert Factors(-1.) == Factors({S(-1): S(1), S(1.): 1}) assert Factors(-2.) == Factors({S(-1): S(1), S(2.): 1}) assert Factors((-2.)**x) == Factors({S(-2.): x}) assert Factors(S(-2)) == Factors({S(-1): S(1), S(2): 1}) assert Factors(S.Half) == Factors({S(2): -S.One}) assert Factors(S(3) / 2) == Factors({S(3): S.One, S(2): S(-1)}) assert Factors({I: S(1)}) == Factors(I) assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1}) assert Factors({S.NegativeOne: -S(3) / 2}).as_expr() == I A = symbols('A', commutative=False) assert Factors(2 * A**2) == Factors({S(2): 1, A**2: 1}) assert Factors(I) == Factors({I: S.One}) assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2))) assert Factors(x).normal(S(0)) == (Factors(), Factors(S(0))) raises(ZeroDivisionError, lambda: Factors(x).div(S(0))) assert Factors(x).mul(S(2)) == Factors(2 * x) assert Factors(x).mul(S(0)).is_zero assert Factors(x).mul(1 / x).is_one assert Factors(x**sqrt(2)**3).as_expr() == x**(2 * sqrt(2)) assert Factors(x)**Factors(S(2)) == Factors(x**2) assert Factors(x).gcd(S(0)) == Factors(x) assert Factors(x).lcm(S(0)).is_zero assert Factors(S(0)).div(x) == (Factors(S(0)), Factors()) assert Factors(x).div(x) == (Factors(), Factors()) assert Factors({x: .2}) / Factors({x: .2}) == Factors() assert Factors(x) != Factors() assert Factors(S(0)).normal(x) == (Factors(S(0)), Factors()) n, d = x**(2 + y), x**2 f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(x**y), Factors()) assert f.gcd(d) == Factors() d = x**y assert f.div(d) == f.normal(d) == (Factors(x**2), Factors()) assert f.gcd(d) == Factors(d) n = d = 2**x f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(), Factors()) assert f.gcd(d) == Factors(d) n, d = 2**x, 2**y f = Factors(n) assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y})) assert f.gcd(d) == Factors() # extraction of constant only n = x**(x + 3) assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).normal(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).normal(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1})) assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).div(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).div(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).div(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1})) assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1}) assert Factors(x * x / y) == Factors({x: 2, y: -1}) assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9})
def test_Factors(): assert Factors() == Factors({}) == Factors(S(1)) assert Factors().as_expr() == S.One assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4 assert Factors(S.Infinity) == Factors({oo: 1}) assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1}) a = Factors({x: 5, y: 3, z: 7}) b = Factors({ y: 4, z: 3, t: 10}) assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10}) assert a.div(b) == divmod(a, b) == \ (Factors({x: 5, z: 4}), Factors({y: 1, t: 10})) assert a.quo(b) == a/b == Factors({x: 5, z: 4}) assert a.rem(b) == a % b == Factors({y: 1, t: 10}) assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21}) assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30}) assert a.gcd(b) == Factors({y: 3, z: 3}) assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10}) a = Factors({x: 4, y: 7, t: 7}) b = Factors({z: 1, t: 3}) assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x assert Factors(-I)*I == Factors() assert Factors({S(-1): S(3)})*Factors({S(-1): S(1), I: S(5)}) == \ Factors(I) assert Factors(S(2)**x).div(S(3)**x) == \ (Factors({S(2): x}), Factors({S(3): x})) assert Factors(2**(2*x + 2)).div(S(8)) == \ (Factors({S(2): 2*x + 2}), Factors({S(8): S(1)})) # coverage # /!\ things break if this is not True assert Factors({S(-1): S(3)/2}) == Factors({I: S.One, S(-1): S.One}) assert Factors({I: S(1), S(-1): S(1)/3}).as_expr() == I*(-1)**(S(1)/3) assert Factors(-1.) == Factors({S(-1): S(1), S(1.): 1}) assert Factors(-2.) == Factors({S(-1): S(1), S(2.): 1}) assert Factors((-2.)**x) == Factors({S(-2.): x}) assert Factors(S(-2)) == Factors({S(-1): S(1), S(2): 1}) assert Factors(S.Half) == Factors({S(2): -S.One}) assert Factors(S(3)/2) == Factors({S(3): S.One, S(2): S(-1)}) assert Factors({I: S(1)}) == Factors(I) assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1}) assert Factors({S.NegativeOne: -S(3)/2}).as_expr() == I A = symbols('A', commutative=False) assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1}) assert Factors(I) == Factors({I: S.One}) assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2))) assert Factors(x).normal(S(0)) == (Factors(), Factors(S(0))) raises(ZeroDivisionError, lambda: Factors(x).div(S(0))) assert Factors(x).mul(S(2)) == Factors(2*x) assert Factors(x).mul(S(0)).is_zero assert Factors(x).mul(1/x).is_one assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2)) assert Factors(x)**Factors(S(2)) == Factors(x**2) assert Factors(x).gcd(S(0)) == Factors(x) assert Factors(x).lcm(S(0)).is_zero assert Factors(S(0)).div(x) == (Factors(S(0)), Factors()) assert Factors(x).div(x) == (Factors(), Factors()) assert Factors({x: .2})/Factors({x: .2}) == Factors() assert Factors(x) != Factors() assert Factors(S(0)).normal(x) == (Factors(S(0)), Factors()) n, d = x**(2 + y), x**2 f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(x**y), Factors()) d = x**y assert f.div(d) == f.normal(d) == (Factors(x**2), Factors()) n = d = 2**x f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(), Factors()) n, d = 2**x, 2**y f = Factors(n) assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y})) # extraction of constant only n = x**(x + 3) assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).normal(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).normal(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1})) assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).div(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).div(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).div(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1}))