def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import cancel, Order if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k*x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l*logx # XXX true regardless of assumptions? return r # TODO new and probably slow s = self.args[0].nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = self.args[0].nseries(x, n=n, logx=logx) a, b = s.leadterm(x) p = cancel(s/(a*x**b) - 1) g = None l = [] for i in range(n + 2): g = log.taylor_term(i, p, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return log(a) + b*logx + Add(*l) + Order(p**n, x)
def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import cancel, Order if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k * x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l * logx # XXX true regardless of assumptions? return r # TODO new and probably slow s = self.args[0].nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = self.args[0].nseries(x, n=n, logx=logx) a, b = s.leadterm(x) p = cancel(s / (a * x**b) - 1) g = None l = [] for i in range(n + 2): g = log.taylor_term(i, p, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return log(a) + b * logx + Add(*l) + Order(p**n, x)
def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import im, cancel, I, Order, logcombine if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k * x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l * logx # XXX true regardless of assumptions? return r # TODO new and probably slow try: a, b = arg.leadterm(x) s = arg.nseries(x, n=n + b, logx=logx) except (ValueError, NotImplementedError): s = arg.nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = arg.nseries(x, n=n, logx=logx) a, b = s.removeO().leadterm(x) p = cancel(s / (a * x**b) - 1) if p.has(exp): p = logcombine(p) g = None l = [] for i in range(n + 2): g = log.taylor_term(i, p, g) g = g.nseries(x, n=n, logx=logx) l.append(g) res = log(a) + b * logx if cdir != 0: cdir = self.args[0].dir(x, cdir) if a.is_real and a.is_negative and im(cdir) < 0: res -= 2 * I * S.Pi return res + Add(*l) + Order(p**n, x)
def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import im, cancel, I, Order, logcombine from itertools import product if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k * x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l * logx # XXX true regardless of assumptions? return r def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp # TODO new and probably slow try: a, b = arg.leadterm(x) s = arg.nseries(x, n=n + b, logx=logx) except (ValueError, NotImplementedError): s = arg.nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = arg.nseries(x, n=n, logx=logx) a, b = s.removeO().leadterm(x) p = cancel(s / (a * x**b) - 1).expand().powsimp() if p.has(exp): p = logcombine(p) if isinstance(p, Order): n = p.getn() _, d = coeff_exp(p, x) if not d.is_positive: return log(a) + b * logx + Order(x**n, x) def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < n: res[ex] = res.get(ex, S.Zero) + d1[e1] * d2[e2] return res pterms = {} for term in Add.make_args(p): co1, e1 = coeff_exp(term, x) pterms[e1] = pterms.get(e1, S.Zero) + co1.removeO() k = S.One terms = {} pk = pterms while k * d < n: coeff = -(-1)**k / k for ex in pk: terms[ex] = terms.get(ex, S.Zero) + coeff * pk[ex] pk = mul(pk, pterms) k += S.One res = log(a) + b * logx for ex in terms: res += terms[ex] * x**(ex) if cdir != 0: cdir = self.args[0].dir(x, cdir) if a.is_real and a.is_negative and im(cdir) < 0: res -= 2 * I * S.Pi return res + Order(x**n, x)