Example #1
0
def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos, tan, sec, csc, cot
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> from sympy.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - sin(x)*cos(x)/2

       >>> trigintegrate(tan(x)*sec(x),x)
       1/cos(x)

       >>> trigintegrate(sin(x)*tan(x),x)
       -log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    """

    pat, a,n,m = _pat_sincos(x)
    pat1, s,t,q,r = _pat_gen(x)


    M_ = f.match(pat1)


    if M_ is None:
        return

    q = M_[q]
    r = M_[r]


  ###
  ###  f =  function1(written in terms of sincos) X function2(written in terms of sincos)
  ###
    if q is not S.Zero and r is not S.Zero:
        s = M_[s]
        t = M_[t]
        if s.args is not () and t.args is not () \
            and Trig_Check(s) and Trig_Check(t):

            f = s._eval_rewrite_as_sincos(s.args[0])**q * t._eval_rewrite_as_sincos(t.args[0])**r

    if q is S.Zero and r is S.Zero:
        return x

    if q is S.Zero and r is not S.Zero:
        t = M_[t]
        if t.args is not () and Trig_Check(t):
            f = t._eval_rewrite_as_sincos(t.args[0])**r

    if r is S.Zero and q is not S.Zero:
        s = M_[s]
        if s.args is not () and Trig_Check(s):
            f = s._eval_rewrite_as_sincos(s.args[0])**q


    M= f.match(pat)   # matching the rewritten function with the sincos pattern


    if M is None:
        return

    n, m  = M[n], M[m]
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and     (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1-u**2)**((n-1)/2) * u**m
                uu = cos(a*x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1-u**2)**((m-1)/2)
                uu = sin(a*x)

            fi= sympy.integrals.integrate(ff, u)    # XXX cyclic deps
            fx= fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ =  (abs(n) > abs(m))
            m_ =  (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0 :
                    for i in range(0,m/2+1):
                        res += (-1)**i * binomial(m/2,i) * _sin_pow_integrate(n+2*i, x)

                elif m == 0:
                    res=_sin_pow_integrate(n,x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*trigintegrate(cos(x)**(m+2)*sin(x)**(n-2),x)


            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0,n/2+1):
                        res += (-1)**i * binomial(n/2,i) * _cos_pow_integrate(m+2*i, x)

                elif n == 0 :
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res= _cos_pow_integrate(m,x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*trigintegrate(cos(x)**(m-2)*sin(x)**(n+2),x)

            else :
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res=sympy.integrals.integrate((Rational(1,2)*sin(2*x))**m,x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*sympy.integrals.integrate(cos(x)**(m-2)*sin(x)**(n+2),x) ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*sympy.integrals.integrate(cos(x)**(m+2)*sin(x)**(n-2),x)
            return res.subs(x, a*x) / a
Example #2
0
def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> x = Symbol('x')

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - cos(x)*sin(x)/2

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques
    """

    pat, a, n, m = _pat_sincos(x)
    ##m - cos
    ##n - sin

    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]  # should always be there
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1 - u**2)**((n - 1) / 2) * u**m
                uu = cos(a * x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1 - u**2)**((m - 1) / 2)
                uu = sin(a * x)

            fi = sympy.integrals.integrate(ff, u)  # XXX cyclic deps
            fx = fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ = (abs(n) > abs(m))
            m_ = (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0:
                    for i in range(0, m / 2 + 1):
                        res += (-1)**i * binomial(
                            m / 2, i) * sin_pow_integrate(n + 2 * i, x)

                elif m == 0:
                    res = sin_pow_integrate(n, x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res = Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(
                        n - 1) + Rational(n - 1, m + 1) * trigintegrate(
                            cos(x)**(m + 2) * sin(x)**(n - 2), x)

            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0, n / 2 + 1):
                        res += (-1)**i * binomial(
                            n / 2, i) * cos_pow_integrate(m + 2 * i, x)

                elif n == 0:
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res = cos_pow_integrate(m, x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res = Rational(1, (n + 1)) * cos(x)**(m - 1) * sin(x)**(
                        n + 1) + Rational(m - 1, n + 1) * trigintegrate(
                            cos(x)**(m - 2) * sin(x)**(n + 2), x)

            else:
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res = sympy.integrals.integrate(
                        (Rational(1, 2) * sin(2 * x))**m, x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res = Rational(1, (n + 1)) * cos(x)**(m - 1) * sin(x)**(
                            n + 1
                        ) + Rational(m - 1, n + 1) * sympy.integrals.integrate(
                            cos(x)
                            **(m - 2) *
                            sin(x)**
                            (n +
                             2), x
                        )  ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res = Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(
                            n - 1) + Rational(
                                n - 1, m + 1) * sympy.integrals.integrate(
                                    cos(x)**(m + 2) * sin(x)**(n - 2), x)
            return res.subs(x, a * x) / a
def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> from sympy.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - cos(x)*sin(x)/2

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques
    """

    pat, a,n,m = _pat_sincos(x)
    ##m - cos
    ##n - sin

    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]   # should always be there
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and     (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1-u**2)**((n-1)/2) * u**m
                uu = cos(a*x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1-u**2)**((m-1)/2)
                uu = sin(a*x)

            fi= sympy.integrals.integrate(ff, u)    # XXX cyclic deps
            fx= fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ =  (abs(n) > abs(m))
            m_ =  (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0 :
                    for i in range(0,m/2+1):
                        res += (-1)**i * binomial(m/2,i) * sin_pow_integrate(n+2*i, x)

                elif m == 0:
                    res=sin_pow_integrate(n,x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*trigintegrate(cos(x)**(m+2)*sin(x)**(n-2),x)


            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0,n/2+1):
                        res += (-1)**i * binomial(n/2,i) * cos_pow_integrate(m+2*i, x)

                elif n == 0 :
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res= cos_pow_integrate(m,x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*trigintegrate(cos(x)**(m-2)*sin(x)**(n+2),x)

            else :
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res=sympy.integrals.integrate((Rational(1,2)*sin(2*x))**m,x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*sympy.integrals.integrate(cos(x)**(m-2)*sin(x)**(n+2),x) ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*sympy.integrals.integrate(cos(x)**(m+2)*sin(x)**(n-2),x)
            return res.subs(x, a*x) / a