Example #1
0
    def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs):
        """
        Represents the Heaviside function in the form of sign function.

        Explanation
        ===========

        The value of the second argument of Heaviside must specify Heaviside(0)
        = 1/2 for rewritting as sign to be strictly equivalent. For easier
        usage, we also allow this rewriting when Heaviside(0) is undefined.

        Examples
        ========

        >>> from sympy import Heaviside, Symbol, sign, S
        >>> x = Symbol('x', real=True)

        >>> Heaviside(x, H0=S.Half).rewrite(sign)
        sign(x)/2 + 1/2

        >>> Heaviside(x, 0).rewrite(sign)
        Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True))

        >>> Heaviside(x - 2, H0=S.Half).rewrite(sign)
        sign(x - 2)/2 + 1/2

        >>> Heaviside(x**2 - 2*x + 1, H0=S.Half).rewrite(sign)
        sign(x**2 - 2*x + 1)/2 + 1/2

        >>> y = Symbol('y')

        >>> Heaviside(y).rewrite(sign)
        Heaviside(y)

        >>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
        Heaviside(y**2 - 2*y + 1)

        See Also
        ========

        sign

        """
        if arg.is_extended_real:
            pw1 = Piecewise(((sign(arg) + 1) / 2, Ne(arg, 0)),
                            (Heaviside(0, H0=H0), True))
            pw2 = Piecewise(
                ((sign(arg) + 1) / 2, Eq(Heaviside(0, H0=H0),
                                         S(1) / 2)), (pw1, True))
            return pw2
Example #2
0
def test_issue_6167_6151():
    n = pi**1000
    i = int(n)
    assert sign(n - i) == 1
    assert abs(n - i) == n - i
    x = Symbol('x')
    eps = pi**-1500
    big = pi**1000
    one = cos(x)**2 + sin(x)**2
    e = big * one - big + eps
    from sympy.simplify.simplify import simplify
    assert sign(simplify(e)) == 1
    for xi in (111, 11, 1, Rational(1, 10)):
        assert sign(e.subs(x, xi)) == 1
Example #3
0
 def _eval_power(self, e):
     from .evalf import pure_complex
     from .relational import is_eq
     if len(self.args) == 2 and any(_.is_infinite for _ in self.args):
         if e.is_zero is False and is_eq(e, S.One) is False:
             # looking for literal a + I*b
             a, b = self.args
             if a.coeff(S.ImaginaryUnit):
                 a, b = b, a
             ico = b.coeff(S.ImaginaryUnit)
             if ico and ico.is_extended_real and a.is_extended_real:
                 if e.is_extended_negative:
                     return S.Zero
                 if e.is_extended_positive:
                     return S.ComplexInfinity
         return
     if e.is_Rational and self.is_number:
         ri = pure_complex(self)
         if ri:
             r, i = ri
             if e.q == 2:
                 from sympy.functions.elementary.miscellaneous import sqrt
                 D = sqrt(r**2 + i**2)
                 if D.is_Rational:
                     from .exprtools import factor_terms
                     from sympy.functions.elementary.complexes import sign
                     from .function import expand_multinomial
                     # (r, i, D) is a Pythagorean triple
                     root = sqrt(factor_terms((D - r) / 2))**e.p
                     return root * expand_multinomial((
                         # principle value
                         (D + r) / abs(i) + sign(i) * S.ImaginaryUnit)**e.p)
             elif e == -1:
                 return _unevaluated_Mul(r - i * S.ImaginaryUnit,
                                         1 / (r**2 + i**2))
     elif e.is_Number and abs(e) != 1:
         # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
         c, m = zip(*[i.as_coeff_Mul() for i in self.args])
         if any(i.is_Float for i in c):  # XXX should this always be done?
             big = -1
             for i in c:
                 if abs(i) >= big:
                     big = abs(i)
             if big > 0 and big != 1:
                 from sympy.functions.elementary.complexes import sign
                 bigs = (big, -big)
                 c = [sign(i) if i in bigs else i / big for i in c]
                 addpow = Add(*[c * m for c, m in zip(c, m)])**e
                 return big**e * addpow
Example #4
0
    def _eval_rewrite_as_sign(self, arg):
        """Represents the Heaviside function in the form of sign function.

        Examples
        ========

        >>> from sympy import Heaviside, Symbol, sign
        >>> x = Symbol('x', real=True)

        >>> Heaviside(x).rewrite(sign)
        sign(x)/2 + 1/2

        >>> Heaviside(x - 2).rewrite(sign)
        sign(x - 2)/2 + 1/2

        >>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
        sign(x**2 - 2*x + 1)/2 + 1/2

        >>> y = Symbol('y')

        >>> Heaviside(y).rewrite(sign)
        Heaviside(y)

        >>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
        Heaviside(y**2 - 2*y + 1)

        See Also
        ========

        sign

        """
        if arg.is_real:
            return (sign(arg)+1)/2
Example #5
0
def real_root(arg, n=None, evaluate=None):
    """Return the real *n*'th-root of *arg* if possible.

    Parameters
    ==========

    n : int or None, optional
        If *n* is ``None``, then all instances of
        ``(-n)**(1/odd)`` will be changed to ``-n**(1/odd)``.
        This will only create a real root of a principal root.
        The presence of other factors may cause the result to not be
        real.

    evaluate : bool, optional
        The parameter determines if the expression should be evaluated.
        If ``None``, its value is taken from
        ``global_parameters.evaluate``.

    Examples
    ========

    >>> from sympy import root, real_root

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principal root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)

    See Also
    ========

    sympy.polys.rootoftools.rootof
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy.functions.elementary.complexes import Abs, im, sign
    from sympy.functions.elementary.piecewise import Piecewise
    if n is not None:
        return Piecewise((root(arg, n, evaluate=evaluate),
                          Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
                         (Mul(sign(arg),
                              root(Abs(arg), n, evaluate=evaluate),
                              evaluate=evaluate),
                          And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
                         (root(arg, n, evaluate=evaluate), True))
    rv = sympify(arg)
    n1pow = Transform(
        lambda x: -(-x.base)**x.exp, lambda x: x.is_Pow and x.base.is_negative
        and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Example #6
0
 def _updated_range(r, first):
     st = sign(r.step)*step
     if r.start.is_finite:
         rv = Range(first, r.stop, st)
     else:
         rv = Range(r.start, first + st, st)
     return rv
Example #7
0
 def _updated_range(r, first):
     st = sign(r.step) * step
     if r.start.is_finite:
         rv = Range(first, r.stop, st)
     else:
         rv = Range(r.start, first + st, st)
     return rv
 def eval(cls, n, m, z=None):
     if z is not None:
         n, z, m = n, m, z
         k = 2 * z / pi
         if n == S.Zero:
             return elliptic_f(z, m)
         elif n == S.One:
             return elliptic_f(z, m) + (sqrt(1 - m * sin(z) ** 2) * tan(z) - elliptic_e(z, m)) / (1 - m)
         elif k.is_integer:
             return k * elliptic_pi(n, m)
         elif m == S.Zero:
             return atanh(sqrt(n - 1) * tan(z)) / sqrt(n - 1)
         elif n == m:
             return elliptic_f(z, n) - elliptic_pi(1, z, n) + tan(z) / sqrt(1 - n * sin(z) ** 2)
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif z.could_extract_minus_sign():
             return -elliptic_pi(n, -z, m)
     else:
         if n == S.Zero:
             return elliptic_k(m)
         elif n == S.One:
             return S.ComplexInfinity
         elif m == S.Zero:
             return pi / (2 * sqrt(1 - n))
         elif m == S.One:
             return -S.Infinity / sign(n - 1)
         elif n == m:
             return elliptic_e(n) / (1 - n)
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
def test_rewrite():
    x, y = Symbol('x', real=True), Symbol('y')
    assert Heaviside(x).rewrite(Piecewise) == (
        Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)))
    assert Heaviside(y).rewrite(Piecewise) == (
        Piecewise((0, y < 0), (Heaviside(0), Eq(y, 0)), (1, y > 0)))
    assert Heaviside(x, y).rewrite(Piecewise) == (
        Piecewise((0, x < 0), (y, Eq(x, 0)), (1, x > 0)))
    assert Heaviside(x, 0).rewrite(Piecewise) == (
        Piecewise((0, x <= 0), (1, x > 0)))
    assert Heaviside(x, 1).rewrite(Piecewise) == (
        Piecewise((0, x < 0), (1, x >= 0)))
    assert Heaviside(x, nan).rewrite(Piecewise) == (
        Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, x > 0)))

    assert Heaviside(x).rewrite(sign) == \
        Heaviside(x, H0=Heaviside(0)).rewrite(sign) == \
        Piecewise(
            (sign(x)/2 + S(1)/2, Eq(Heaviside(0), S(1)/2)),
            (Piecewise(
                (sign(x)/2 + S(1)/2, Ne(x, 0)), (Heaviside(0), True)), True)
        )

    assert Heaviside(y).rewrite(sign) == Heaviside(y)
    assert Heaviside(x, S.Half).rewrite(sign) == (sign(x)+1)/2
    assert Heaviside(x, y).rewrite(sign) == \
        Piecewise(
            (sign(x)/2 + S(1)/2, Eq(y, S(1)/2)),
            (Piecewise(
                (sign(x)/2 + S(1)/2, Ne(x, 0)), (y, True)), True)
        )

    assert DiracDelta(y).rewrite(Piecewise) == Piecewise((DiracDelta(0), Eq(y, 0)), (0, True))
    assert DiracDelta(y, 1).rewrite(Piecewise) == DiracDelta(y, 1)
    assert DiracDelta(x - 5).rewrite(Piecewise) == (
        Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)))

    assert (x*DiracDelta(x - 10)).rewrite(SingularityFunction) == x*SingularityFunction(x, 10, -1)
    assert 5*x*y*DiracDelta(y, 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, 0, -2)
    assert DiracDelta(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, -1)
    assert DiracDelta(0, 1).rewrite(SingularityFunction) == SingularityFunction(0, 0, -2)

    assert Heaviside(x).rewrite(SingularityFunction) == SingularityFunction(x, 0, 0)
    assert 5*x*y*Heaviside(y + 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, -1, 0)
    assert ((x - 3)**3*Heaviside(x - 3)).rewrite(SingularityFunction) == (x - 3)**3*SingularityFunction(x, 3, 0)
    assert Heaviside(0).rewrite(SingularityFunction) == S.Half
Example #10
0
    def from_rotation_matrix(cls, M):
        """Returns the equivalent quaternion of a matrix. The quaternion will be normalized
        only if the matrix is special orthogonal (orthogonal and det(M) = 1).

        Parameters
        ==========

        M : Matrix
            Input matrix to be converted to equivalent quaternion. M must be special
            orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.

        Returns
        =======

        Quaternion
            The quaternion equivalent to given matrix.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import Matrix, symbols, cos, sin, trigsimp
        >>> x = symbols('x')
        >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
        >>> q = trigsimp(Quaternion.from_rotation_matrix(M))
        >>> q
        sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k

        """

        absQ = M.det()**Rational(1, 3)

        a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
        b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
        c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
        d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2

        b = b * sign(M[2, 1] - M[1, 2])
        c = c * sign(M[0, 2] - M[2, 0])
        d = d * sign(M[1, 0] - M[0, 1])

        return Quaternion(a, b, c, d)
Example #11
0
def test_sign_issue_3068():
    n = pi**1000
    i = int(n)
    x = Symbol('x')
    assert (n - i).round() == 1  # doesn't hang
    assert sign(n - i) == 1
    # perhaps it's not possible to get the sign right when
    # only 1 digit is being requested for this situation;
    # 2 digits works
    assert (n - x).n(1, subs={x: i}) > 0
    assert (n - x).n(2, subs={x: i}) > 0
Example #12
0
def real_root(arg, n=None, evaluate=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principal root -- the presence of
    other factors may cause the result to not be real.

    The parameter evaluate determines if the expression should be evaluated.
    If None, its value is taken from global_evaluate.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principal root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.rootof
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy.functions.elementary.complexes import Abs, im, sign
    from sympy.functions.elementary.piecewise import Piecewise
    if n is not None:
        return Piecewise(
            (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
            (Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate),
            And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
            (root(arg, n, evaluate=evaluate), True))
    rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Example #13
0
 def _first_finite_point(r1, c):
     if c == r1.start:
         return c
     # st is the signed step we need to take to
     # get from c to r1.start
     st = sign(r1.start - c)*step
     # use Range to calculate the first point:
     # we want to get as close as possible to
     # r1.start; the Range will not be null since
     # it will at least contain c
     s1 = Range(c, r1.start + st, st)[-1]
     if s1 == r1.start:
         pass
     else:
         # if we didn't hit r1.start then, if the
         # sign of st didn't match the sign of r1.step
         # we are off by one and s1 is not in r1
         if sign(r1.step) != sign(st):
             s1 -= st
     if s1 not in r1:
         return
     return s1
Example #14
0
 def _first_finite_point(r1, c):
     if c == r1.start:
         return c
     # st is the signed step we need to take to
     # get from c to r1.start
     st = sign(r1.start - c) * step
     # use Range to calculate the first point:
     # we want to get as close as possible to
     # r1.start; the Range will not be null since
     # it will at least contain c
     s1 = Range(c, r1.start + st, st)[-1]
     if s1 == r1.start:
         pass
     else:
         # if we didn't hit r1.start then, if the
         # sign of st didn't match the sign of r1.step
         # we are off by one and s1 is not in r1
         if sign(r1.step) != sign(st):
             s1 -= st
     if s1 not in r1:
         return
     return s1
Example #15
0
def test_conjugate():
    a = Symbol("a", real=True)
    b = Symbol("b", real=True)
    c = Symbol("c", imaginary=True)
    d = Symbol("d", imaginary=True)
    x = Symbol('x')
    z = a + I * b + c + I * d
    zc = a - I * b - c + I * d
    assert conjugate(z) == zc
    assert conjugate(exp(z)) == exp(zc)
    assert conjugate(exp(I * x)) == exp(-I * conjugate(x))
    assert conjugate(z**5) == zc**5
    assert conjugate(abs(x)) == abs(x)
    assert conjugate(sign(z)) == sign(zc)
    assert conjugate(sin(z)) == sin(zc)
    assert conjugate(cos(z)) == cos(zc)
    assert conjugate(tan(z)) == tan(zc)
    assert conjugate(cot(z)) == cot(zc)
    assert conjugate(sinh(z)) == sinh(zc)
    assert conjugate(cosh(z)) == cosh(zc)
    assert conjugate(tanh(z)) == tanh(zc)
    assert conjugate(coth(z)) == coth(zc)
Example #16
0
def real_root(arg, n=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principal root -- the presence of
    other factors may cause the result to not be real.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principal root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.rootof
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy.functions.elementary.complexes import Abs, im, sign
    from sympy.functions.elementary.piecewise import Piecewise
    if n is not None:
        return Piecewise(
            (root(arg, n), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
            (sign(arg)*root(Abs(arg), n), And(Eq(im(arg), S.Zero),
                Eq(Mod(n, 2), S.One))),
            (root(arg, n), True))
    rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Example #17
0
File: add.py Project: msgoff/sympy
    def _eval_power(self, e):
        if e.is_Rational and self.is_number:
            from sympy.core.evalf import pure_complex
            from sympy.core.mul import _unevaluated_Mul
            from sympy.core.exprtools import factor_terms
            from sympy.core.function import expand_multinomial
            from sympy.functions.elementary.complexes import sign
            from sympy.functions.elementary.miscellaneous import sqrt

            ri = pure_complex(self)
            if ri:
                r, i = ri
                if e.q == 2:
                    D = sqrt(r**2 + i**2)
                    if D.is_Rational:
                        # (r, i, D) is a Pythagorean triple
                        root = sqrt(factor_terms((D - r) / 2))**e.p
                        return root * expand_multinomial((
                            # principle value
                            (D + r) / abs(i) + sign(i) * S.ImaginaryUnit)**e.p)
                elif e == -1:
                    return _unevaluated_Mul(r - i * S.ImaginaryUnit,
                                            1 / (r**2 + i**2))
        elif e.is_Number and abs(e) != 1:
            # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
            c, m = zip(*[i.as_coeff_Mul() for i in self.args])
            if any(i.is_Float for i in c):  # XXX should this always be done?
                big = -1
                for i in c:
                    if abs(i) >= big:
                        big = abs(i)
                if big > 0 and big != 1:
                    from sympy.functions.elementary.complexes import sign

                    bigs = (big, -big)
                    c = [sign(i) if i in bigs else i / big for i in c]
                    addpow = Add(*[c * m for c, m in zip(c, m)])**e
                    return big**e * addpow
Example #18
0
def test_quaternion_construction():
    q = Quaternion(w, x, y, z)
    assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)

    q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
                                    pi*Rational(2, 3))
    assert q2 == Quaternion(S.Half, S.Half,
                            S.Half, S.Half)

    M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
    q3 = trigsimp(Quaternion.from_rotation_matrix(M))
    assert q3 == Quaternion(sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)

    nc = Symbol('nc', commutative=False)
    raises(ValueError, lambda: Quaternion(w, x, nc, z))
 def eval(cls, n, m, z=None):
     if z is not None:
         n, z, m = n, m, z
         if n.is_zero:
             return elliptic_f(z, m)
         elif n is S.One:
             return (elliptic_f(z, m) +
                     (sqrt(1 - m*sin(z)**2)*tan(z) -
                      elliptic_e(z, m))/(1 - m))
         k = 2*z/pi
         if k.is_integer:
             return k*elliptic_pi(n, m)
         elif m.is_zero:
             return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1)
         elif n == m:
             return (elliptic_f(z, n) - elliptic_pi(1, z, n) +
                     tan(z)/sqrt(1 - n*sin(z)**2))
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif z.could_extract_minus_sign():
             return -elliptic_pi(n, -z, m)
         if n.is_zero:
             return elliptic_f(z, m)
         if m.is_extended_real and m.is_infinite or \
                 n.is_extended_real and n.is_infinite:
             return S.Zero
     else:
         if n.is_zero:
             return elliptic_k(m)
         elif n is S.One:
             return S.ComplexInfinity
         elif m.is_zero:
             return pi/(2*sqrt(1 - n))
         elif m == S.One:
             return S.NegativeInfinity/sign(n - 1)
         elif n == m:
             return elliptic_e(n)/(1 - n)
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         if n.is_zero:
             return elliptic_k(m)
         if m.is_extended_real and m.is_infinite or \
                 n.is_extended_real and n.is_infinite:
             return S.Zero
Example #20
0
def limit_at_inf(num, den, x):
    """
    Find the limit of a rational function
    at oo
    """
    # pwr = degree(num) - degree(den)
    pwr = -val_at_inf(num, den, x)
    # Numerator has a greater degree than denominator
    # Limit at infinity would depend on the sign of the
    # leading coefficients of numerator and denominator
    if pwr > 0:
        return oo*sign(num.LC()/den.LC())
    # Degree of numerator is equal to that of denominator
    # Limit at infinity is just the ratio of leading coeffs
    elif pwr == 0:
        return num.LC()/den.LC()
    # Degree of numerator is less than that of denominator
    # Limit at infinity is just 0
    else:
        return 0
Example #21
0
    def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs):
        """Represents the Heaviside function in the form of sign function.
        The value of the second argument of Heaviside must specify Heaviside(0)
        = 1/2 for rewritting as sign to be strictly equivalent.  For easier
        usage, we also allow this rewriting when Heaviside(0) is undefined.

        Examples
        ========

        >>> from sympy import Heaviside, Symbol, sign
        >>> x = Symbol('x', real=True)

        >>> Heaviside(x).rewrite(sign)
        sign(x)/2 + 1/2

        >>> Heaviside(x, 0).rewrite(sign)
        Heaviside(x, 0)

        >>> Heaviside(x - 2).rewrite(sign)
        sign(x - 2)/2 + 1/2

        >>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
        sign(x**2 - 2*x + 1)/2 + 1/2

        >>> y = Symbol('y')

        >>> Heaviside(y).rewrite(sign)
        Heaviside(y)

        >>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
        Heaviside(y**2 - 2*y + 1)

        See Also
        ========

        sign

        """
        if arg.is_extended_real:
            if H0 is None or H0 == S.Half:
                return (sign(arg) + 1) / 2
Example #22
0
    def _eval_rewrite_as_sign(self, arg, H0=None):
        """Represents the Heaviside function in the form of sign function.
        The value of the second argument of Heaviside must specify Heaviside(0)
        = 1/2 for rewritting as sign to be strictly equivalent.  For easier
        usage, we also allow this rewriting when Heaviside(0) is undefined.

        Examples
        ========

        >>> from sympy import Heaviside, Symbol, sign
        >>> x = Symbol('x', real=True)

        >>> Heaviside(x).rewrite(sign)
        sign(x)/2 + 1/2

        >>> Heaviside(x, 0).rewrite(sign)
        Heaviside(x, 0)

        >>> Heaviside(x - 2).rewrite(sign)
        sign(x - 2)/2 + 1/2

        >>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
        sign(x**2 - 2*x + 1)/2 + 1/2

        >>> y = Symbol('y')

        >>> Heaviside(y).rewrite(sign)
        Heaviside(y)

        >>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
        Heaviside(y**2 - 2*y + 1)

        See Also
        ========

        sign

        """
        if arg.is_real:
            if H0 is None or H0 == S.Half:
                return (sign(arg)+1)/2
Example #23
0
 def eval(cls, *args):
     if len(args) == 3:
         n, z, m = args
         k = 2 * z / pi
         if n == S.Zero:
             return elliptic_f(z, m)
         elif n == S.One:
             return (elliptic_f(z, m) +
                     (sqrt(1 - m * sin(z)**2) * tan(z) - elliptic_e(z, m)) /
                     (1 - m))
         elif k.is_integer:
             return k * elliptic_pi(n, m)
         elif m == S.Zero:
             return atanh(sqrt(n - 1) * tan(z)) / sqrt(n - 1)
         elif n == m:
             return (elliptic_f(z, n) - elliptic_pi(1, z, n) +
                     tan(z) / sqrt(1 - n * sin(z)**2))
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif z.could_extract_minus_sign():
             return -elliptic_pi(n, -z, m)
     else:
         n, m = args
         if n == S.Zero:
             return elliptic_k(m)
         elif n == S.One:
             return S.ComplexInfinity
         elif m == S.Zero:
             return pi / (2 * sqrt(1 - n))
         elif m == S.One:
             return -S.Infinity / sign(n - 1)
         elif n == m:
             return elliptic_e(n) / (1 - n)
         elif n in (S.Infinity, S.NegativeInfinity):
             return S.Zero
         elif m in (S.Infinity, S.NegativeInfinity):
             return S.Zero
Example #24
0
 def _eval_power(self, e):
     if e.is_Rational and self.is_number:
         from sympy.core.evalf import pure_complex
         from sympy.core.mul import _unevaluated_Mul
         from sympy.core.exprtools import factor_terms
         from sympy.core.function import expand_multinomial
         from sympy.functions.elementary.complexes import sign
         from sympy.functions.elementary.miscellaneous import sqrt
         ri = pure_complex(self)
         if ri:
             r, i = ri
             if e.q == 2:
                 D = sqrt(r**2 + i**2)
                 if D.is_Rational:
                     # (r, i, D) is a Pythagorean triple
                     root = sqrt(factor_terms((D - r) / 2))**e.p
                     return root * expand_multinomial((
                         # principle value
                         (D + r) / abs(i) + sign(i) * S.ImaginaryUnit)**e.p)
             elif e == -1:
                 return _unevaluated_Mul(r - i * S.ImaginaryUnit,
                                         1 / (r**2 + i**2))
Example #25
0
 def _eval_power(self, e):
     if e.is_Rational and self.is_number:
         from sympy.core.evalf import pure_complex
         from sympy.core.mul import _unevaluated_Mul
         from sympy.core.exprtools import factor_terms
         from sympy.core.function import expand_multinomial
         from sympy.functions.elementary.complexes import sign
         from sympy.functions.elementary.miscellaneous import sqrt
         ri = pure_complex(self)
         if ri:
             r, i = ri
             if e.q == 2:
                 D = sqrt(r**2 + i**2)
                 if D.is_Rational:
                     # (r, i, D) is a Pythagorean triple
                     root = sqrt(factor_terms((D - r)/2))**e.p
                     return root*expand_multinomial((
                         # principle value
                         (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
             elif e == -1:
                 return _unevaluated_Mul(
                     r - i*S.ImaginaryUnit,
                     1/(r**2 + i**2))
Example #26
0
 def _eval_power(self, e):
     if e.is_Rational and self.is_number:
         from sympy.core.evalf import pure_complex
         from sympy.core.mul import _unevaluated_Mul
         from sympy.core.exprtools import factor_terms
         from sympy.core.function import expand_multinomial
         from sympy.functions.elementary.complexes import sign
         from sympy.functions.elementary.miscellaneous import sqrt
         ri = pure_complex(self)
         if ri:
             r, i = ri
             if e.q == 2:
                 D = sqrt(r**2 + i**2)
                 if D.is_Rational:
                     # (r, i, D) is a Pythagorean triple
                     root = sqrt(factor_terms((D - r) / 2))**e.p
                     return root * expand_multinomial((
                         # principle value
                         (D + r) / abs(i) + sign(i) * S.ImaginaryUnit)**e.p)
             elif e == -1:
                 return _unevaluated_Mul(r - i * S.ImaginaryUnit,
                                         1 / (r**2 + i**2))
     elif e.is_Number and abs(e) != 1:
         # handle the Float case: (2.0 + 4*x)**e -> 2.**e*(1 + 2.0*x)**e
         c, m = zip(*[i.as_coeff_Mul() for i in self.args])
         big = 0
         float = False
         s = dict()
         for i in c:
             float = float or i.is_Float
             if abs(i) >= big:
                 big = 1.0 * abs(i)
                 s[i] = -1 if i < 0 else 1
         if float and big and big != 1:
             addpow = Add(*[(s[c[i]] if abs(c[i]) == big else c[i] / big) *
                            m[i] for i in range(len(c))])**e
             return big**e * addpow
Example #27
0
def test_Abs_rewrite():
    x = Symbol('x', real=True)
    a = Abs(x).rewrite(Heaviside).expand()
    assert a == x * Heaviside(x) - x * Heaviside(-x)
    for i in [-2, -1, 0, 1, 2]:
        assert a.subs(x, i) == abs(i)
    y = Symbol('y')
    assert Abs(y).rewrite(Heaviside) == Abs(y)

    x, y = Symbol('x', real=True), Symbol('y')
    assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
    assert Abs(y).rewrite(Piecewise) == Abs(y)
    assert Abs(y).rewrite(sign) == y / sign(y)

    i = Symbol('i', imaginary=True)
    assert abs(i).rewrite(Piecewise) == Piecewise((I * i, I * i >= 0),
                                                  (-I * i, True))

    assert Abs(y).rewrite(conjugate) == sqrt(y * conjugate(y))
    assert Abs(i).rewrite(conjugate) == sqrt(-i**2)  #  == -I*i

    y = Symbol('y', extended_real=True)
    assert  (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \
        -exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y)
Example #28
0
    def _intersect(self, other):
        from sympy.functions.elementary.integers import ceiling, floor
        from sympy.functions.elementary.complexes import sign

        if other is S.Naturals:
            return self._intersect(Interval(1, S.Infinity))

        if other is S.Integers:
            return self

        if other.is_Interval:
            if not all(i.is_number for i in other.args[:2]):
                return

            # In case of null Range, return an EmptySet.
            if self.size == 0:
                return S.EmptySet

            # trim down to self's size, and represent
            # as a Range with step 1.
            start = ceiling(max(other.inf, self.inf))
            if start not in other:
                start += 1
            end = floor(min(other.sup, self.sup))
            if end not in other:
                end -= 1
            return self.intersect(Range(start, end + 1))

        if isinstance(other, Range):
            from sympy.solvers.diophantine import diop_linear
            from sympy.core.numbers import ilcm

            # non-overlap quick exits
            if not other:
                return S.EmptySet
            if not self:
                return S.EmptySet
            if other.sup < self.inf:
                return S.EmptySet
            if other.inf > self.sup:
                return S.EmptySet

            # work with finite end at the start
            r1 = self
            if r1.start.is_infinite:
                r1 = r1.reversed
            r2 = other
            if r2.start.is_infinite:
                r2 = r2.reversed

            # this equation represents the values of the Range;
            # it's a linear equation
            eq = lambda r, i: r.start + i * r.step

            # we want to know when the two equations might
            # have integer solutions so we use the diophantine
            # solver
            a, b = diop_linear(eq(r1, Dummy()) - eq(r2, Dummy()))

            # check for no solution
            no_solution = a is None and b is None
            if no_solution:
                return S.EmptySet

            # there is a solution
            # -------------------

            # find the coincident point, c
            a0 = a.as_coeff_Add()[0]
            c = eq(r1, a0)

            # find the first point, if possible, in each range
            # since c may not be that point
            def _first_finite_point(r1, c):
                if c == r1.start:
                    return c
                # st is the signed step we need to take to
                # get from c to r1.start
                st = sign(r1.start - c) * step
                # use Range to calculate the first point:
                # we want to get as close as possible to
                # r1.start; the Range will not be null since
                # it will at least contain c
                s1 = Range(c, r1.start + st, st)[-1]
                if s1 == r1.start:
                    pass
                else:
                    # if we didn't hit r1.start then, if the
                    # sign of st didn't match the sign of r1.step
                    # we are off by one and s1 is not in r1
                    if sign(r1.step) != sign(st):
                        s1 -= st
                if s1 not in r1:
                    return
                return s1

            # calculate the step size of the new Range
            step = abs(ilcm(r1.step, r2.step))
            s1 = _first_finite_point(r1, c)
            if s1 is None:
                return S.EmptySet
            s2 = _first_finite_point(r2, c)
            if s2 is None:
                return S.EmptySet

            # replace the corresponding start or stop in
            # the original Ranges with these points; the
            # result must have at least one point since
            # we know that s1 and s2 are in the Ranges
            def _updated_range(r, first):
                st = sign(r.step) * step
                if r.start.is_finite:
                    rv = Range(first, r.stop, st)
                else:
                    rv = Range(r.start, first + st, st)
                return rv

            r1 = _updated_range(self, s1)
            r2 = _updated_range(other, s2)

            # work with them both in the increasing direction
            if sign(r1.step) < 0:
                r1 = r1.reversed
            if sign(r2.step) < 0:
                r2 = r2.reversed

            # return clipped Range with positive step; it
            # can't be empty at this point
            start = max(r1.start, r2.start)
            stop = min(r1.stop, r2.stop)
            return Range(start, stop, step)
        else:
            return
Example #29
0
def test_issue_4099():
    a = Symbol('a')
    assert limit(a/x, x, 0) == oo*sign(a)
    assert limit(-a/x, x, 0) == -oo*sign(a)
    assert limit(-a*x, x, oo) == -oo*sign(a)
    assert limit(a*x, x, oo) == oo*sign(a)
Example #30
0
 def _eval_rewrite_as_sign(self, arg):
     if arg.is_real:
         return (sign(arg) + 1) / 2
Example #31
0
def test_sympy__functions__elementary__complexes__sign():
    from sympy.functions.elementary.complexes import sign
    assert _test_args(sign(x))
Example #32
0
def test_issue_18118():
    assert limit(sign(sin(x)), x, 0, "-") == -1
    assert limit(sign(sin(x)), x, 0, "+") == 1
Example #33
0
    def doit(self, **hints):
        """Evaluates the limit.

        Parameters
        ==========

        deep : bool, optional (default: True)
            Invoke the ``doit`` method of the expressions involved before
            taking the limit.

        hints : optional keyword arguments
            To be passed to ``doit`` methods; only used if deep is True.
        """

        e, z, z0, dir = self.args

        if z0 is S.ComplexInfinity:
            raise NotImplementedError("Limits at complex "
                                      "infinity are not implemented")

        if hints.get('deep', True):
            e = e.doit(**hints)
            z = z.doit(**hints)
            z0 = z0.doit(**hints)

        if e == z:
            return z0

        if not e.has(z):
            return e

        if z0 is S.NaN:
            return S.NaN

        if e.has(*_illegal):
            return self

        if e.is_Order:
            return Order(limit(e.expr, z, z0), *e.args[1:])

        cdir = 0
        if str(dir) == "+":
            cdir = 1
        elif str(dir) == "-":
            cdir = -1

        def set_signs(expr):
            if not expr.args:
                return expr
            newargs = tuple(set_signs(arg) for arg in expr.args)
            if newargs != expr.args:
                expr = expr.func(*newargs)
            abs_flag = isinstance(expr, Abs)
            sign_flag = isinstance(expr, sign)
            if abs_flag or sign_flag:
                sig = limit(expr.args[0], z, z0, dir)
                if sig.is_zero:
                    sig = limit(1 / expr.args[0], z, z0, dir)
                if sig.is_extended_real:
                    if (sig < 0) == True:
                        return -expr.args[0] if abs_flag else S.NegativeOne
                    elif (sig > 0) == True:
                        return expr.args[0] if abs_flag else S.One
            return expr

        if e.has(Float):
            # Convert floats like 0.5 to exact SymPy numbers like S.Half, to
            # prevent rounding errors which can lead to unexpected execution
            # of conditional blocks that work on comparisons
            # Also see comments in https://github.com/sympy/sympy/issues/19453
            from sympy.simplify.simplify import nsimplify
            e = nsimplify(e)
        e = set_signs(e)

        if e.is_meromorphic(z, z0):
            if abs(z0) is S.Infinity:
                newe = e.subs(z, 1 / z)
                # cdir changes sign as oo- should become 0+
                cdir = -cdir
            else:
                newe = e.subs(z, z + z0)
            try:
                coeff, ex = newe.leadterm(z, cdir=cdir)
            except ValueError:
                pass
            else:
                if ex > 0:
                    return S.Zero
                elif ex == 0:
                    return coeff
                if cdir == 1 or not (int(ex) & 1):
                    return S.Infinity * sign(coeff)
                elif cdir == -1:
                    return S.NegativeInfinity * sign(coeff)
                else:
                    return S.ComplexInfinity

        if abs(z0) is S.Infinity:
            if e.is_Mul:
                e = factor_terms(e)
            newe = e.subs(z, 1 / z)
            # cdir changes sign as oo- should become 0+
            cdir = -cdir
        else:
            newe = e.subs(z, z + z0)
        try:
            coeff, ex = newe.leadterm(z, cdir=cdir)
        except (ValueError, NotImplementedError, PoleError):
            # The NotImplementedError catching is for custom functions
            from sympy.simplify.powsimp import powsimp
            e = powsimp(e)
            if e.is_Pow:
                r = self.pow_heuristics(e)
                if r is not None:
                    return r
        else:
            if isinstance(coeff, AccumBounds) and ex == S.Zero:
                return coeff
            if coeff.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity,
                         S.NaN):
                return self
            if not coeff.has(z):
                if ex.is_positive:
                    return S.Zero
                elif ex == 0:
                    return coeff
                elif ex.is_negative:
                    if ex.is_integer:
                        if cdir == 1 or ex.is_even:
                            return S.Infinity * sign(coeff)
                        elif cdir == -1:
                            return S.NegativeInfinity * sign(coeff)
                        else:
                            return S.ComplexInfinity
                    else:
                        if cdir == 1:
                            return S.Infinity * sign(coeff)
                        elif cdir == -1:
                            return S.Infinity * sign(coeff) * S.NegativeOne**ex
                        else:
                            return S.ComplexInfinity

        # gruntz fails on factorials but works with the gamma function
        # If no factorial term is present, e should remain unchanged.
        # factorial is defined to be zero for negative inputs (which
        # differs from gamma) so only rewrite for positive z0.
        if z0.is_extended_positive:
            e = e.rewrite(factorial, gamma)

        l = None

        try:
            if str(dir) == '+-':
                r = gruntz(e, z, z0, '+')
                l = gruntz(e, z, z0, '-')
                if l != r:
                    raise ValueError(
                        "The limit does not exist since "
                        "left hand limit = %s and right hand limit = %s" %
                        (l, r))
            else:
                r = gruntz(e, z, z0, dir)
            if r is S.NaN or l is S.NaN:
                raise PoleError()
        except (PoleError, ValueError):
            if l is not None:
                raise
            r = heuristics(e, z, z0, dir)
            if r is None:
                return self

        return r
Example #34
0
 def _eval_rewrite_as_sign(self, arg):
     if arg.is_real:
         return (sign(arg)+1)/2
Example #35
0
    def _intersect(self, other):
        from sympy.functions.elementary.integers import ceiling, floor
        from sympy.functions.elementary.complexes import sign

        if other is S.Naturals:
            return self._intersect(Interval(1, S.Infinity))

        if other is S.Integers:
            return self

        if other.is_Interval:
            if not all(i.is_number for i in other.args[:2]):
                return

            # In case of null Range, return an EmptySet.
            if self.size == 0:
                return S.EmptySet

            # trim down to self's size, and represent
            # as a Range with step 1.
            start = ceiling(max(other.inf, self.inf))
            if start not in other:
                start += 1
            end = floor(min(other.sup, self.sup))
            if end not in other:
                end -= 1
            return self.intersect(Range(start, end + 1))

        if isinstance(other, Range):
            from sympy.solvers.diophantine import diop_linear
            from sympy.core.numbers import ilcm

            # non-overlap quick exits
            if not other:
                return S.EmptySet
            if not self:
                return S.EmptySet
            if other.sup < self.inf:
                return S.EmptySet
            if other.inf > self.sup:
                return S.EmptySet

            # work with finite end at the start
            r1 = self
            if r1.start.is_infinite:
                r1 = r1.reversed
            r2 = other
            if r2.start.is_infinite:
                r2 = r2.reversed

            # this equation represents the values of the Range;
            # it's a linear equation
            eq = lambda r, i: r.start + i*r.step

            # we want to know when the two equations might
            # have integer solutions so we use the diophantine
            # solver
            a, b = diop_linear(eq(r1, Dummy()) - eq(r2, Dummy()))

            # check for no solution
            no_solution = a is None and b is None
            if no_solution:
                return S.EmptySet

            # there is a solution
            # -------------------

            # find the coincident point, c
            a0 = a.as_coeff_Add()[0]
            c = eq(r1, a0)

            # find the first point, if possible, in each range
            # since c may not be that point
            def _first_finite_point(r1, c):
                if c == r1.start:
                    return c
                # st is the signed step we need to take to
                # get from c to r1.start
                st = sign(r1.start - c)*step
                # use Range to calculate the first point:
                # we want to get as close as possible to
                # r1.start; the Range will not be null since
                # it will at least contain c
                s1 = Range(c, r1.start + st, st)[-1]
                if s1 == r1.start:
                    pass
                else:
                    # if we didn't hit r1.start then, if the
                    # sign of st didn't match the sign of r1.step
                    # we are off by one and s1 is not in r1
                    if sign(r1.step) != sign(st):
                        s1 -= st
                if s1 not in r1:
                    return
                return s1

            # calculate the step size of the new Range
            step = abs(ilcm(r1.step, r2.step))
            s1 = _first_finite_point(r1, c)
            if s1 is None:
                return S.EmptySet
            s2 = _first_finite_point(r2, c)
            if s2 is None:
                return S.EmptySet

            # replace the corresponding start or stop in
            # the original Ranges with these points; the
            # result must have at least one point since
            # we know that s1 and s2 are in the Ranges
            def _updated_range(r, first):
                st = sign(r.step)*step
                if r.start.is_finite:
                    rv = Range(first, r.stop, st)
                else:
                    rv = Range(r.start, first + st, st)
                return rv
            r1 = _updated_range(self, s1)
            r2 = _updated_range(other, s2)

            # work with them both in the increasing direction
            if sign(r1.step) < 0:
                r1 = r1.reversed
            if sign(r2.step) < 0:
                r2 = r2.reversed

            # return clipped Range with positive step; it
            # can't be empty at this point
            start = max(r1.start, r2.start)
            stop = min(r1.stop, r2.stop)
            return Range(start, stop, step)
        else:
            return
Example #36
0
def test_sign():
    x = Symbol('x', real = True)
    assert refine(sign(x), Q.positive(x)) == 1
    assert refine(sign(x), Q.negative(x)) == -1
    assert refine(sign(x), Q.zero(x)) == 0
    assert refine(sign(x), True) == sign(x)
    assert refine(sign(Abs(x)), Q.nonzero(x)) == 1

    x = Symbol('x', imaginary=True)
    assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit
    assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit
    assert refine(sign(x), True) == sign(x)

    x = Symbol('x', complex=True)
    assert refine(sign(x), Q.zero(x)) == 0
Example #37
0
def test_issue_5740():
    assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
Example #38
0
def test_sympy__functions__elementary__complexes__sign():
    from sympy.functions.elementary.complexes import sign
    assert _test_args(sign(x))
Example #39
0
def _upper_hessenberg_decomposition(A):
    """Converts a matrix into Hessenberg matrix H

    Returns 2 matrices H, P s.t.
    $P H P^{T} = A$, where H is an upper hessenberg matrix
    and P is an orthogonal matrix

    Examples
    ========

    >>> from sympy import Matrix
    >>> A = Matrix([
    ...     [1,2,3],
    ...     [-3,5,6],
    ...     [4,-8,9],
    ... ])
    >>> H, P = A.upper_hessenberg_decomposition()
    >>> H
    Matrix([
    [1,    6/5,    17/5],
    [5, 213/25, -134/25],
    [0, 216/25,  137/25]])
    >>> P
    Matrix([
    [1,    0,   0],
    [0, -3/5, 4/5],
    [0,  4/5, 3/5]])
    >>> P * H * P.H == A
    True


    References
    ==========

    .. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
    """

    M = A.as_mutable()

    if not M.is_square:
        raise NonSquareMatrixError("Matrix must be square.")

    n = M.cols
    P = M.eye(n)
    H = M

    for j in range(n - 2):

        u = H[j + 1:, j]

        if u[1:, :].is_zero_matrix:
            continue

        if sign(u[0]) != 0:
            u[0] = u[0] + sign(u[0]) * u.norm()
        else:
            u[0] = u[0] + u.norm()

        v = u / u.norm()

        H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
        H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
        P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H

    return H, P