Example #1
0
def test_diff():
    assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
    assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
    assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
    assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
    assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
Example #2
0
def test_multivariate_laplace():
    raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]]))
    L = Laplace('L', [1, 0], [[1, 0], [0, 1]])
    L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]])
    assert density(L)(2, 3) == exp(2) * besselk(0, sqrt(39)) / pi
    L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]])
    assert density(L1)(0, 1) == \
        exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y))
    assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    assert L.pspace.distribution == L2.pspace.distribution
Example #3
0
def test_pmint_bessel_products():
    # Note: Derivatives of Bessel functions have many forms.
    # Recurrence relations are needed for comparisons.
    if ON_TRAVIS:
        skip("Too slow for travis.")

    f = x * besselj(nu, x) * bessely(nu, 2 * x)
    g = -2 * x * besselj(nu, x) * bessely(nu - 1, 2 * x) / 3 + x * besselj(
        nu - 1, x) * bessely(nu, 2 * x) / 3

    assert heurisch(f, x) == g

    f = x * besselj(nu, x) * besselk(nu, 2 * x)
    g = -2 * x * besselj(nu, x) * besselk(nu - 1, 2 * x) / 5 - x * besselj(
        nu - 1, x) * besselk(nu, 2 * x) / 5

    assert heurisch(f, x) == g
Example #4
0
def test_latex_bessel():
    from sympy.functions.special.bessel import besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn
    from sympy.abc import z

    assert latex(besselj(n, z ** 2) ** k) == r"J^{k}_{n}\left(z^{2}\right)"
    assert latex(bessely(n, z)) == r"Y_{n}\left(z\right)"
    assert latex(besseli(n, z)) == r"I_{n}\left(z\right)"
    assert latex(besselk(n, z)) == r"K_{n}\left(z\right)"
    assert latex(hankel1(n, z ** 2) ** 2) == r"\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}"
    assert latex(hankel2(n, z)) == r"H^{(2)}_{n}\left(z\right)"
    assert latex(jn(n, z)) == r"j_{n}\left(z\right)"
    assert latex(yn(n, z)) == r"y_{n}\left(z\right)"
Example #5
0
def test_bessel_eval():
    n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)

    for f in [besselj, besseli]:
        assert f(0, 0) is S.One
        assert f(2.1, 0) is S.Zero
        assert f(-3, 0) is S.Zero
        assert f(-10.2, 0) is S.ComplexInfinity
        assert f(1 + 3*I, 0) is S.Zero
        assert f(-3 + I, 0) is S.ComplexInfinity
        assert f(-2*I, 0) is S.NaN
        assert f(n, 0) != S.One and f(n, 0) != S.Zero
        assert f(m, 0) != S.One and f(m, 0) != S.Zero
        assert f(k, 0) is S.Zero

    assert bessely(0, 0) is S.NegativeInfinity
    assert besselk(0, 0) is S.Infinity
    for f in [bessely, besselk]:
        assert f(1 + I, 0) is S.ComplexInfinity
        assert f(I, 0) is S.NaN

    for f in [besselj, bessely]:
        assert f(m, S.Infinity) is S.Zero
        assert f(m, S.NegativeInfinity) is S.Zero

    for f in [besseli, besselk]:
        assert f(m, I*S.Infinity) is S.Zero
        assert f(m, I*S.NegativeInfinity) is S.Zero

    for f in [besseli, besselk]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == f(3, z)
        assert f(-n, z) == f(n, z)
        assert f(-m, z) != f(m, z)

    for f in [besselj, bessely]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == -f(3, z)
        assert f(-n, z) == (-1)**n*f(n, z)
        assert f(-m, z) != (-1)**m*f(m, z)

    for f in [besselj, besseli]:
        assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)

    assert besseli(2, -z) == besseli(2, z)
    assert besseli(3, -z) == -besseli(3, z)

    assert besselj(0, -z) == besselj(0, z)
    assert besselj(1, -z) == -besselj(1, z)

    assert besseli(0, I*z) == besselj(0, z)
    assert besseli(1, I*z) == I*besselj(1, z)
    assert besselj(3, I*z) == -I*besseli(3, z)
Example #6
0
def test_slow_expand():
    def check(eq, ans):
        return tn(eq, ans) and eq == ans

    rn = randcplx(a=1, b=0, d=0, c=2)

    for besselx in [besselj, bessely, besseli, besselk]:
        ri = S(2*randint(-11, 10) + 1) / 2  # half integer in [-21/2, 21/2]
        assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))

    assert check(expand_func(besseli(rn, x)),
                 besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
    assert check(expand_func(besseli(-rn, x)),
                 besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)

    assert check(expand_func(besselj(rn, x)),
                 -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
    assert check(expand_func(besselj(-rn, x)),
                 -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)

    assert check(expand_func(besselk(rn, x)),
                 besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
    assert check(expand_func(besselk(-rn, x)),
                 besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)

    assert check(expand_func(bessely(rn, x)),
                 -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
    assert check(expand_func(bessely(-rn, x)),
                 -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)
Example #7
0
def test_latex_bessel():
    from sympy.functions.special.bessel import (besselj, bessely, besseli,
            besselk, hankel1, hankel2, jn, yn)
    from sympy.abc import z
    assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
    assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
    assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
    assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
    assert latex(hankel1(n, z**2)**2) == \
        r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
    assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
    assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
    assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
Example #8
0
def test_latex_bessel():
    from sympy.functions.special.bessel import (besselj, bessely, besseli,
            besselk, hankel1, hankel2, jn, yn)
    from sympy.abc import z
    assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
    assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
    assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
    assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
    assert latex(hankel1(n, z**2)**2) == \
              r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
    assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
    assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
    assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
Example #9
0
 def pdf(self, *args):
     mu, sigma = self.mu, self.sigma
     mu_T = mu.transpose()
     k = S(mu.shape[0])
     sigma_inv = sigma.inv()
     args = ImmutableMatrix(args)
     args_T = args.transpose()
     x = (mu_T*sigma_inv*mu)[0]
     y = (args_T*sigma_inv*args)[0]
     v = 1 - k/2
     return (2 * (y/(2 + x))**(v/2) * besselk(v, sqrt((2 + x)*y)) *
             exp((args_T * sigma_inv * mu)[0]) /
             ((2 * pi)**(k/2) * sqrt(det(sigma))))
Example #10
0
def test_meromorphic():
    assert besselj(2, x).is_meromorphic(x, 1) == True
    assert besselj(2, x).is_meromorphic(x, 0) == True
    assert besselj(2, x).is_meromorphic(x, oo) == False
    assert besselj(S(2)/3, x).is_meromorphic(x, 1) == True
    assert besselj(S(2)/3, x).is_meromorphic(x, 0) == False
    assert besselj(S(2)/3, x).is_meromorphic(x, oo) == False
    assert besselj(x, 2*x).is_meromorphic(x, 2) == False
    assert besselk(0, x).is_meromorphic(x, 1) == True
    assert besselk(2, x).is_meromorphic(x, 0) == True
    assert besseli(0, x).is_meromorphic(x, 1) == True
    assert besseli(2, x).is_meromorphic(x, 0) == True
    assert bessely(0, x).is_meromorphic(x, 1) == True
    assert bessely(0, x).is_meromorphic(x, 0) == False
    assert bessely(2, x).is_meromorphic(x, 0) == True
    assert hankel1(3, x**2 + 2*x).is_meromorphic(x, 1) == True
    assert hankel1(0, x).is_meromorphic(x, 0) == False
    assert hankel2(11, 4).is_meromorphic(x, 5) == True
    assert hn1(6, 7*x**3 + 4).is_meromorphic(x, 7) == True
    assert hn2(3, 2*x).is_meromorphic(x, 9) == True
    assert jn(5, 2*x + 7).is_meromorphic(x, 4) == True
    assert yn(8, x**2 + 11).is_meromorphic(x, 6) == True
Example #11
0
 def pdf(self, *args):
     from sympy.functions.special.bessel import besselk
     mu, sigma = Matrix(self.mu), Matrix(self.sigma)
     mu_T = mu.transpose()
     k = S(len(mu))
     sigma_inv = sigma.inv()
     args = Matrix(args)
     args_T = args.transpose()
     x = (mu_T * sigma_inv * mu)[0]
     y = (args_T * sigma_inv * args)[0]
     v = 1 - k / 2
     return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\
     *(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\
     *exp((args_T*sigma_inv*mu)[0])
Example #12
0
 def pdf(self, *args):
     from sympy.functions.special.bessel import besselk
     mu, sigma = self.mu, self.sigma
     mu_T = mu.transpose()
     k = S(len(mu))
     sigma_inv = sigma.inv()
     args = ImmutableMatrix(args)
     args_T = args.transpose()
     x = (mu_T*sigma_inv*mu)[0]
     y = (args_T*sigma_inv*args)[0]
     v = 1 - k/2
     return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\
     *(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\
     *exp((args_T*sigma_inv*mu)[0])
Example #13
0
def test_rewrite():
    assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z)
    assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z)
    assert besseli(n, z).rewrite(besselj) == \
        exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
    assert besselj(n, z).rewrite(besseli) == \
        exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)

    nu = randcplx()

    assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
    assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)

    assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
    assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)

    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)

    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)

    # check that a rewrite was triggered, when the order is set to a generic
    # symbol 'nu'
    assert yn(nu, z) != yn(nu, z).rewrite(jn)
    assert hn1(nu, z) != hn1(nu, z).rewrite(jn)
    assert hn2(nu, z) != hn2(nu, z).rewrite(jn)
    assert jn(nu, z) != jn(nu, z).rewrite(yn)
    assert hn1(nu, z) != hn1(nu, z).rewrite(yn)
    assert hn2(nu, z) != hn2(nu, z).rewrite(yn)

    # rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is
    # not allowed if a generic symbol 'nu' is used as the order of the SBFs
    # to avoid inconsistencies (the order of bessel[jy] is allowed to be
    # complex-valued, whereas SBFs are defined only for integer orders)
    order = nu
    for f in (besselj, bessely):
        assert hn1(order, z) == hn1(order, z).rewrite(f)
        assert hn2(order, z) == hn2(order, z).rewrite(f)

    assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2
    assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2

    # for integral orders rewriting SBFs w.r.t bessel[jy] is allowed
    N = Symbol('n', integer=True)
    ri = randint(-11, 10)
    for order in (ri, N):
        for f in (besselj, bessely):
            assert yn(order, z) != yn(order, z).rewrite(f)
            assert jn(order, z) != jn(order, z).rewrite(f)
            assert hn1(order, z) != hn1(order, z).rewrite(f)
            assert hn2(order, z) != hn2(order, z).rewrite(f)

    for func, refunc in product((yn, jn, hn1, hn2),
                                (jn, yn, besselj, bessely)):
        assert tn(func(ri, z), func(ri, z).rewrite(refunc), z)
Example #14
0
def test_mellin_transform_bessel():
    from sympy.functions.elementary.miscellaneous import Max
    MT = mellin_transform

    # 8.4.19
    assert MT(besselj(a, 2*sqrt(x)), x, s) == \
        (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/(
        gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
        -re(a)/2 - S.Half, Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/(
        gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), (
        -re(a)/2, Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))**2, x, s) == \
        (gamma(a + s)*gamma(S.Half - s)
         / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
            (-re(a), S.Half), True)
    assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(S.Half - s)
         / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
            (0, S.Half), True)
    # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
    #       I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
    assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (gamma(1 - s)*gamma(a + s - S.Half)
         / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)),
            (S.Half - re(a), S.Half), True)
    assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
        (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
         / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
            *gamma( 1 - s + (a + b)/2)),
            (-(re(a) + re(b))/2, S.Half), True)
    assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
        ((Max(re(a), -re(a)), S.Half), True)

    # Section 8.4.20
    assert MT(bessely(a, 2*sqrt(x)), x, s) == \
        (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
            (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s)
         * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
         / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
            (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s)
         / (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)),
            (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s)
         / (pi**S('3/2')*gamma(1 + a - s)),
            (Max(-re(a), 0), S.Half), True)
    assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
         * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
         / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
            (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True)
    # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
    # are a mess (no matter what way you look at it ...)
    assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
             ((Max(-re(a), 0, re(a)), S.Half), True)

    # Section 8.4.22
    # TODO we can't do any of these (delicate cancellation)

    # Section 8.4.23
    assert MT(besselk(a, 2*sqrt(x)), x, s) == \
        (gamma(
         s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
    assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
        a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
        gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
    # TODO bessely(a, x)*besselk(a, x) is a mess
    assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(
        a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)),
        (Max(-re(a), 0), S.Half), True)
    assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
        gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
        gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
        re(a)/2 - re(b)/2), S.Half), True)

    # TODO products of besselk are a mess

    mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
    mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True))))
    assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/(
        (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
    assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
Example #15
0
def test_expand():
    assert expand_func(besselj(S.Half, z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(S.Half, z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(S.Half, z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(S.Half, z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real is True
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real is True
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None

    for besselx in [besselj, bessely, besseli, besselk]:
        assert expand_func(besselx(oo, x)) == besselx(oo, x, evaluate=False)
        assert expand_func(besselx(-oo, x)) == besselx(-oo, x, evaluate=False)
Example #16
0
def test_laplace_transform():
    from sympy import lowergamma
    from sympy.functions.special.delta_functions import DiracDelta
    from sympy.functions.special.error_functions import (fresnelc, fresnels)
    LT = laplace_transform
    a, b, c, = symbols('a, b, c', positive=True)
    t, w, x = symbols('t, w, x')
    f = Function("f")
    g = Function("g")

    # Test rule-base evaluation according to
    # http://eqworld.ipmnet.ru/en/auxiliary/inttrans/
    # Power-law functions (laplace2.pdf)
    assert LT(a*t+t**2+t**(S(5)/2), t, s) ==\
        (a/s**2 + 2/s**3 + 15*sqrt(pi)/(8*s**(S(7)/2)), 0, True)
    assert LT(b/(t+a), t, s) == (-b*exp(-a*s)*Ei(-a*s), 0, True)
    assert LT(1/sqrt(t+a), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
    assert LT(sqrt(t)/(t+a), t, s) ==\
        (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
         0, True)
    assert LT((t+a)**(-S(3)/2), t, s) ==\
        (-2*sqrt(pi)*sqrt(s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + 2/sqrt(a),
         0, True)
    assert LT(t**(S(1)/2)*(t+a)**(-1), t, s) ==\
        (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
         0, True)
    assert LT(1/(a*sqrt(t) + t**(3/2)), t, s) ==\
        (pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
    assert LT((t+a)**b, t, s) ==\
        (s**(-b - 1)*exp(-a*s)*lowergamma(b + 1, a*s), 0, True)
    assert LT(t**5/(t+a), t, s) == (120*a**5*lowergamma(-5, a*s), 0, True)
    # Exponential functions (laplace3.pdf)
    assert LT(exp(t), t, s) == (1/(s - 1), 1, True)
    assert LT(exp(2*t), t, s) == (1/(s - 2), 2, True)
    assert LT(exp(a*t), t, s) == (1/(s - a), a, True)
    assert LT(exp(a*(t-b)), t, s) == (exp(-a*b)/(-a + s), a, True)
    assert LT(t*exp(-a*(t)), t, s) == ((a + s)**(-2), -a, True)
    assert LT(t*exp(-a*(t-b)), t, s) == (exp(a*b)/(a + s)**2, -a, True)
    assert LT(b*t*exp(-a*t), t, s) == (b/(a + s)**2, -a, True)
    assert LT(t**(S(7)/4)*exp(-8*t)/gamma(S(11)/4), t, s) ==\
        ((s + 8)**(-S(11)/4), -8, True)
    assert LT(t**(S(3)/2)*exp(-8*t), t, s) ==\
        (3*sqrt(pi)/(4*(s + 8)**(S(5)/2)), -8, True)
    assert LT(t**a*exp(-a*t), t, s) ==  ((a+s)**(-a-1)*gamma(a+1), -a, True)
    assert LT(b*exp(-a*t**2), t, s) ==\
        (sqrt(pi)*b*exp(s**2/(4*a))*erfc(s/(2*sqrt(a)))/(2*sqrt(a)), 0, True)
    assert LT(exp(-2*t**2), t, s) ==\
        (sqrt(2)*sqrt(pi)*exp(s**2/8)*erfc(sqrt(2)*s/4)/4, 0, True)
    assert LT(b*exp(2*t**2), t, s) == b*LaplaceTransform(exp(2*t**2), t, s)
    assert LT(t*exp(-a*t**2), t, s) ==\
        (1/(2*a) - s*erfc(s/(2*sqrt(a)))/(4*sqrt(pi)*a**(S(3)/2)), 0, True)
    assert LT(exp(-a/t), t, s) ==\
        (2*sqrt(a)*sqrt(1/s)*besselk(1, 2*sqrt(a)*sqrt(s)), 0, True)
    assert LT(sqrt(t)*exp(-a/t), t, s) ==\
        (sqrt(pi)*(2*sqrt(a)*sqrt(s) + 1)*sqrt(s**(-3))*exp(-2*sqrt(a)*\
                                                    sqrt(s))/2, 0, True)
    assert LT(exp(-a/t)/sqrt(t), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
    assert LT( exp(-a/t)/(t*sqrt(t)), t, s) ==\
        (sqrt(pi)*sqrt(1/a)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
    assert LT(exp(-2*sqrt(a*t)), t, s) ==\
        ( 1/s -sqrt(pi)*sqrt(a) * exp(a/s)*erfc(sqrt(a)*sqrt(1/s))/\
         s**(S(3)/2), 0, True)
    assert LT(exp(-2*sqrt(a*t))/sqrt(t), t, s) == (exp(a/s)*erfc(sqrt(a)*\
        sqrt(1/s))*(sqrt(pi)*sqrt(1/s)), 0, True)
    assert LT(t**4*exp(-2/t), t, s) ==\
        (8*sqrt(2)*(1/s)**(S(5)/2)*besselk(5, 2*sqrt(2)*sqrt(s)), 0, True)
    # Hyperbolic functions (laplace4.pdf)
    assert LT(sinh(a*t), t, s) == (a/(-a**2 + s**2), a, True)
    assert LT(b*sinh(a*t)**2, t, s) == (2*a**2*b/(-4*a**2*s**2 + s**3),
                                        2*a, True)
    # The following line confirms that issue #21202 is solved
    assert LT(cosh(2*t), t, s) == (s/(-4 + s**2), 2, True)
    assert LT(cosh(a*t), t, s) == (s/(-a**2 + s**2), a, True)
    assert LT(cosh(a*t)**2, t, s) == ((-2*a**2 + s**2)/(-4*a**2*s**2 + s**3),
                                      2*a, True)
    assert LT(sinh(x + 3), x, s) == (
        (-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 0, Abs(s) > 1)
    # The following line replaces the old test test_issue_7173()
    assert LT(sinh(a*t)*cosh(a*t), t, s) == (a/(-4*a**2 + s**2), 2*a, True)
    assert LT(sinh(a*t)/t, t, s) == (log((a + s)/(-a + s))/2, a, True)
    assert LT(t**(-S(3)/2)*sinh(a*t), t, s) ==\
        (-sqrt(pi)*(sqrt(-a + s) - sqrt(a + s)), a, True)
    assert LT(sinh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(a/s)/s**(S(3)/2), 0, True)
    assert LT(sqrt(t)*sinh(2*sqrt(a*t)), t, s) ==\
        (-sqrt(a)/s**2 + sqrt(pi)*(a + s/2)*exp(a/s)*erf(sqrt(a)*\
                                            sqrt(1/s))/s**(S(5)/2), 0, True)
    assert LT(sinh(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/sqrt(s), 0, True)
    assert LT(sinh(sqrt(a*t))**2/sqrt(t), t, s) ==\
        (sqrt(pi)*(exp(a/s) - 1)/(2*sqrt(s)), 0, True)
    assert LT(t**(S(3)/7)*cosh(a*t), t, s) ==\
        (((a + s)**(-S(10)/7) + (-a+s)**(-S(10)/7))*gamma(S(10)/7)/2, a, True)
    assert LT(cosh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/s**(S(3)/2) + 1/s,
         0, True)
    assert LT(sqrt(t)*cosh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*(a + s/2)*exp(a/s)/s**(S(5)/2), 0, True)
    assert LT(cosh(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*exp(a/s)/sqrt(s), 0, True)
    assert LT(cosh(sqrt(a*t))**2/sqrt(t), t, s) ==\
        (sqrt(pi)*(exp(a/s) + 1)/(2*sqrt(s)), 0, True)
    # logarithmic functions (laplace5.pdf)
    assert LT(log(t), t, s) == (-log(s+S.EulerGamma)/s, 0, True)
    assert LT(log(t/a), t, s) == (-log(a*s + S.EulerGamma)/s, 0, True)
    assert LT(log(1+a*t), t, s) == (-exp(s/a)*Ei(-s/a)/s, 0, True)
    assert LT(log(t+a), t, s) == ((log(a) - exp(s/a)*Ei(-s/a)/s)/s, 0, True)
    assert LT(log(t)/sqrt(t), t, s) ==\
        (sqrt(pi)*(-log(s) - 2*log(2) - S.EulerGamma)/sqrt(s), 0, True)
    assert LT(t**(S(5)/2)*log(t), t, s) ==\
        (15*sqrt(pi)*(-log(s)-2*log(2)-S.EulerGamma+S(46)/15)/(8*s**(S(7)/2)),
         0, True)
    assert (LT(t**3*log(t), t, s, noconds=True)-6*(-log(s) - S.EulerGamma\
                                    + S(11)/6)/s**4).simplify() == S.Zero
    assert LT(log(t)**2, t, s) ==\
        (((log(s) + EulerGamma)**2 + pi**2/6)/s, 0, True)
    assert LT(exp(-a*t)*log(t), t, s) ==\
        ((-log(a + s) - S.EulerGamma)/(a + s), -a, True)
    # Trigonometric functions (laplace6.pdf)
    assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
    assert LT(Abs(sin(a*t)), t, s) ==\
        (a*coth(pi*s/(2*a))/(a**2 + s**2), 0, True)
    assert LT(sin(a*t)/t, t, s) == (atan(a/s), 0, True)
    assert LT(sin(a*t)**2/t, t, s) == (log(4*a**2/s**2 + 1)/4, 0, True)
    assert LT(sin(a*t)**2/t**2, t, s) ==\
        (a*atan(2*a/s) - s*log(4*a**2/s**2 + 1)/4, 0, True)
    assert LT(sin(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(-a/s)/s**(S(3)/2), 0, True)
    assert LT(sin(2*sqrt(a*t))/t, t, s) == (pi*erf(sqrt(a)*sqrt(1/s)), 0, True)
    assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
    assert LT(cos(a*t)**2, t, s) ==\
        ((2*a**2 + s**2)/(s*(4*a**2 + s**2)), 0, True)
    assert LT(sqrt(t)*cos(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*(-2*a + s)*exp(-a/s)/(2*s**(S(5)/2)), 0, True)
    assert LT(cos(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(-a/s), 0, True)
    assert LT(sin(a*t)*sin(b*t), t, s) ==\
        (2*a*b*s/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True)
    assert LT(cos(a*t)*sin(b*t), t, s) ==\
        (b*(-a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
         0, True)
    assert LT(cos(a*t)*cos(b*t), t, s) ==\
        (s*(a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
         0, True)
    assert LT(c*exp(-b*t)*sin(a*t), t, s) == (a*c/(a**2 + (b + s)**2),
                                              -b, True)
    assert LT(c*exp(-b*t)*cos(a*t), t, s) == ((b + s)*c/(a**2 + (b + s)**2),
                                              -b, True)
    assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True)
    # Error functions (laplace7.pdf)
    assert LT(erf(a*t), t, s) == (exp(s**2/(4*a**2))*erfc(s/(2*a))/s, 0, True)
    assert LT(erf(sqrt(a*t)), t, s) == (sqrt(a)/(s*sqrt(a + s)), 0, True)
    assert LT(exp(a*t)*erf(sqrt(a*t)), t, s) ==\
        (sqrt(a)/(sqrt(s)*(-a + s)), a, True)
    assert LT(erf(sqrt(a/t)/2), t, s) == ((1-exp(-sqrt(a)*sqrt(s)))/s, 0, True)
    assert LT(erfc(sqrt(a*t)), t, s) ==\
        ((-sqrt(a) + sqrt(a + s))/(s*sqrt(a + s)), 0, True)
    assert LT(exp(a*t)*erfc(sqrt(a*t)), t, s) ==\
        (1/(sqrt(a)*sqrt(s) + s), 0, True)
    assert LT(erfc(sqrt(a/t)/2), t, s) == (exp(-sqrt(a)*sqrt(s))/s, 0, True)
    # Bessel functions (laplace8.pdf)
    assert LT(besselj(0, a*t), t, s) == (1/sqrt(a**2 + s**2), 0, True)
    assert LT(besselj(1, a*t), t, s) ==\
        (a/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))), 0, True)
    assert LT(besselj(2, a*t), t, s) ==\
        (a**2/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))**2), 0, True)
    assert LT(t*besselj(0, a*t), t, s) ==\
        (s/(a**2 + s**2)**(S(3)/2), 0, True)
    assert LT(t*besselj(1, a*t), t, s) ==\
        (a/(a**2 + s**2)**(S(3)/2), 0, True)
    assert LT(t**2*besselj(2, a*t), t, s) ==\
        (3*a**2/(a**2 + s**2)**(S(5)/2), 0, True)
    assert LT(besselj(0, 2*sqrt(a*t)), t, s) == (exp(-a/s)/s, 0, True)
    assert LT(t**(S(3)/2)*besselj(3, 2*sqrt(a*t)), t, s) ==\
        (a**(S(3)/2)*exp(-a/s)/s**4, 0, True)
    assert LT(besselj(0, a*sqrt(t**2+b*t)), t, s) ==\
        (exp(b*s - b*sqrt(a**2 + s**2))/sqrt(a**2 + s**2), 0, True)
    assert LT(besseli(0, a*t), t, s) == (1/sqrt(-a**2 + s**2), a, True)
    assert LT(besseli(1, a*t), t, s) ==\
        (a/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))), a, True)
    assert LT(besseli(2, a*t), t, s) ==\
        (a**2/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))**2), a, True)
    assert LT(t*besseli(0, a*t), t, s) == (s/(-a**2 + s**2)**(S(3)/2), a, True)
    assert LT(t*besseli(1, a*t), t, s) == (a/(-a**2 + s**2)**(S(3)/2), a, True)
    assert LT(t**2*besseli(2, a*t), t, s) ==\
        (3*a**2/(-a**2 + s**2)**(S(5)/2), a, True)
    assert LT(t**(S(3)/2)*besseli(3, 2*sqrt(a*t)), t, s) ==\
        (a**(S(3)/2)*exp(a/s)/s**4, 0, True)
    assert LT(bessely(0, a*t), t, s) ==\
        (-2*asinh(s/a)/(pi*sqrt(a**2 + s**2)), 0, True)
    assert LT(besselk(0, a*t), t, s) ==\
        (log(s + sqrt(-a**2 + s**2))/sqrt(-a**2 + s**2), a, True)
    assert LT(sin(a*t)**8, t, s) ==\
        (40320*a**8/(s*(147456*a**8 + 52480*a**6*s**2 + 4368*a**4*s**4 +\
                        120*a**2*s**6 + s**8)), 0, True)

    # Test general rules and unevaluated forms
    # These all also test whether issue #7219 is solved.
    assert LT(Heaviside(t-1)*cos(t-1), t, s) == (s*exp(-s)/(s**2 + 1), 0, True)
    assert LT(a*f(t), t, w) == a*LaplaceTransform(f(t), t, w)
    assert LT(a*Heaviside(t+1)*f(t+1), t, s) ==\
        a*LaplaceTransform(f(t + 1)*Heaviside(t + 1), t, s)
    assert LT(a*Heaviside(t-1)*f(t-1), t, s) ==\
        a*LaplaceTransform(f(t), t, s)*exp(-s)
    assert LT(b*f(t/a), t, s) == a*b*LaplaceTransform(f(t), t, a*s)
    assert LT(exp(-f(x)*t), t, s) == (1/(s + f(x)), -f(x), True)
    assert LT(exp(-a*t)*f(t), t, s) == LaplaceTransform(f(t), t, a + s)
    assert LT(exp(-a*t)*erfc(sqrt(b/t)/2), t, s) ==\
        (exp(-sqrt(b)*sqrt(a + s))/(a + s), -a, True)
    assert LT(sinh(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -a+s)/2 - LaplaceTransform(f(t), t, a+s)/2
    assert LT(sinh(a*t)*t, t, s) ==\
        (-1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
    assert LT(cosh(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -a+s)/2 + LaplaceTransform(f(t), t, a+s)/2
    assert LT(cosh(a*t)*t, t, s) ==\
        (1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
    assert LT(sin(a*t)*f(t), t, s) ==\
        I*(-LaplaceTransform(f(t), t, -I*a + s) +\
           LaplaceTransform(f(t), t, I*a + s))/2
    assert LT(sin(a*t)*t, t, s) ==\
        (2*a*s/(a**4 + 2*a**2*s**2 + s**4), 0, True)
    assert LT(cos(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -I*a + s)/2 +\
        LaplaceTransform(f(t), t, I*a + s)/2
    assert LT(cos(a*t)*t, t, s) ==\
        ((-a**2 + s**2)/(a**4 + 2*a**2*s**2 + s**4), 0, True)
    # The following two lines test whether issues #5813 and #7176 are solved.
    assert LT(diff(f(t), (t, 1)), t, s) == s*LaplaceTransform(f(t), t, s)\
        - f(0)
    assert LT(diff(f(t), (t, 3)), t, s) == s**3*LaplaceTransform(f(t), t, s)\
        - s**2*f(0) - s*Subs(Derivative(f(t), t), t, 0)\
            - Subs(Derivative(f(t), (t, 2)), t, 0)
    assert LT(a*f(b*t)+g(c*t), t, s) == a*LaplaceTransform(f(t), t, s/b)/b +\
        LaplaceTransform(g(t), t, s/c)/c
    assert inverse_laplace_transform(
        f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
    assert LT(f(t)*g(t), t, s) == LaplaceTransform(f(t)*g(t), t, s)

    # additional basic tests from wikipedia
    assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
        ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
    assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
        == exp(-b)/(s**2 - 1)

    # DiracDelta function: standard cases
    assert LT(DiracDelta(t), t, s) == (1, 0, True)
    assert LT(DiracDelta(a*t), t, s) == (1/a, 0, True)
    assert LT(DiracDelta(t/42), t, s) == (42, 0, True)
    assert LT(DiracDelta(t+42), t, s) == (0, 0, True)
    assert LT(DiracDelta(t)+DiracDelta(t-42), t, s) == \
        (1 + exp(-42*s), 0, True)
    assert LT(DiracDelta(t)-a*exp(-a*t), t, s) == (s/(a + s), 0, True)
    assert LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s) == \
        (exp(-42*s - 42) + 1, -oo, True)

    # Collection of cases that cannot be fully evaluated and/or would catch
    # some common implementation errors
    assert LT(DiracDelta(t**2), t, s) == LaplaceTransform(DiracDelta(t**2), t, s)
    assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True)
    assert LT(DiracDelta(t*(1 - t)), t, s) == \
        LaplaceTransform(DiracDelta(-t**2 + t), t, s)
    assert LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) == \
        (LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) + \
         1 + exp(-s) + 1/s, 0, True)
    assert LT(DiracDelta(2*t-2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)
    assert LT(DiracDelta(-2*t+2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)

    # Heaviside tests
    assert LT(Heaviside(t), t, s) == (1/s, 0, True)
    assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
    assert LT(Heaviside(t-1), t, s) == (exp(-s)/s, 0, True)
    assert LT(Heaviside(2*t-4), t, s) == (exp(-2*s)/s, 0, True)
    assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)
    assert LT(Heaviside(2*t+4), t, s) == (1/s, 0, True)
    assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)

    # Fresnel functions
    assert laplace_transform(fresnels(t), t, s) == \
        ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
            cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
    assert laplace_transform(fresnelc(t), t, s) == (
        ((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi)
        + sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True))

    # Matrix tests
    Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]])
    Ms = Matrix([[    1/(s - 1), (s + 1)**(-2)],
                 [(s + 1)**(-2),     1/(s - 1)]])

    # The default behaviour for Laplace tranform of a Matrix returns a Matrix
    # of Tuples and is deprecated:
    with warns_deprecated_sympy():
        Ms_conds = Matrix([[(1/(s - 1), 1, True), ((s + 1)**(-2),
            -1, True)], [((s + 1)**(-2), -1, True), (1/(s - 1), 1, True)]])
    with warns_deprecated_sympy():
        assert LT(Mt, t, s) == Ms_conds
    # The new behavior is to return a tuple of a Matrix and the convergence
    # conditions for the matrix as a whole:
    assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, True)
    # With noconds=True the transformed matrix is returned without conditions
    # either way:
    assert LT(Mt, t, s, noconds=True) == Ms
    assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms
Example #17
0
def test_sympy__functions__special__bessel__besselk():
    from sympy.functions.special.bessel import besselk
    assert _test_args(besselk(x, 1))
Example #18
0
def test_sympy__functions__special__bessel__besselk():
    from sympy.functions.special.bessel import besselk
    assert _test_args(besselk(x, 1))
Example #19
0
def test_issue_14874():
    assert limit(besselk(0, x), x, oo) == 0