Example #1
0
def test_manualintegrate_orthogonal_poly():
    n = symbols('n')
    a, b = 7, Rational(5, 3)
    polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
        chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
        assoc_laguerre(n, a, x)]
    for p in polys:
        integral = manualintegrate(p, x)
        for deg in [-2, -1, 0, 1, 3, 5, 8]:
            # some accept negative "degree", some do not
            try:
                p_subbed = p.subs(n, deg)
            except ValueError:
                continue
            assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0

        # can also integrate simple expressions with these polynomials
        q = x*p.subs(x, 2*x + 1)
        integral = manualintegrate(q, x)
        for deg in [2, 4, 7]:
            assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0

        # cannot integrate with respect to any other parameter
        t = symbols('t')
        for i in range(len(p.args) - 1):
            new_args = list(p.args)
            new_args[i] = t
            assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
Example #2
0
def test_gegenbauer():
    n = Symbol("n")
    a = Symbol("a")

    assert gegenbauer(0, a, x) == 1
    assert gegenbauer(1, a, x) == 2 * a * x
    assert gegenbauer(2, a, x) == -a + x**2 * (2 * a**2 + 2 * a)
    assert gegenbauer(3, a, x) == \
        x**3*(4*a**3/3 + 4*a**2 + a*Rational(8, 3)) + x*(-2*a**2 - 2*a)

    assert gegenbauer(-1, a, x) == 0
    assert gegenbauer(n, S.Half, x) == legendre(n, x)
    assert gegenbauer(n, 1, x) == chebyshevu(n, x)
    assert gegenbauer(n, -1, x) == 0

    X = gegenbauer(n, a, x)
    assert isinstance(X, gegenbauer)

    assert gegenbauer(n, a, -x) == (-1)**n * gegenbauer(n, a, x)
    assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
        gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S.Half)*gamma(n + 1))
    assert gegenbauer(n, a,
                      1) == gamma(2 * a + n) / (gamma(2 * a) * gamma(n + 1))

    assert gegenbauer(n, Rational(3, 4), -1) is zoo
    assert gegenbauer(n, Rational(1, 4),
                      -1) == (sqrt(2) * cos(pi * (n + S.One / 4)) *
                              gamma(n + S.Half) / (sqrt(pi) * gamma(n + 1)))

    m = Symbol("m", positive=True)
    assert gegenbauer(m, a, oo) == oo * RisingFactorial(a, m)
    assert unchanged(gegenbauer, n, a, oo)

    assert conjugate(gegenbauer(n,
                                a, x)) == gegenbauer(n, conjugate(a),
                                                     conjugate(x))

    _k = Dummy('k')

    assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
    assert diff(gegenbauer(n, a, x), a).dummy_eq(
        Sum((2 * (-1)**(-_k + n) + 2) * (_k + a) * gegenbauer(_k, a, x) /
            ((-_k + n) * (_k + 2 * a + n)) +
            ((2 * _k + 2) / ((_k + 2 * a) * (2 * _k + 2 * a + 1)) + 2 /
             (_k + 2 * a + n)) * gegenbauer(n, a, x), (_k, 0, n - 1)))
    assert diff(gegenbauer(n, a, x), x) == 2 * a * gegenbauer(n - 1, a + 1, x)

    assert gegenbauer(n, a, x).rewrite('polynomial').dummy_eq(
        Sum((-1)**_k * (2 * x)**(-2 * _k + n) * RisingFactorial(a, -_k + n) /
            (factorial(_k) * factorial(-2 * _k + n)), (_k, 0, floor(n / 2))))

    raises(ArgumentIndexError, lambda: gegenbauer(n, a, x).fdiff(4))
Example #3
0
def test_sympy__functions__special__polynomials__chebyshevu():
    from sympy.functions.special.polynomials import chebyshevu
    assert _test_args(chebyshevu(x, 2))
Example #4
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer(
        n, a + S.Half, x) / RisingFactorial(2 * a + 1, n)
    assert jacobi(n, a, -a,
                  x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) *
                         assoc_legendre(n, a, x) * factorial(-a + n) *
                         gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) *
                                   assoc_legendre(n, b, x) *
                                   gamma(-b + n + 1) / gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(Rational(
        3, 2), n) * chebyshevu(n, x) / factorial(n + 1)
    assert jacobi(
        n, Rational(-1, 2), Rational(-1, 2),
        x) == RisingFactorial(S.Half, n) * chebyshevt(n, x) / factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper(
        (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m)
    assert unchanged(jacobi, n, a, b, oo)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    _k = Dummy('k')
    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), a).dummy_eq(
        Sum((jacobi(n, a, b, x) + (2 * _k + a + b + 1) *
             RisingFactorial(_k + b + 1, -_k + n) * jacobi(_k, a, b, x) /
             ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n))) /
            (_k + a + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), b).dummy_eq(
        Sum(((-1)**(-_k + n) * (2 * _k + a + b + 1) *
             RisingFactorial(_k + a + 1, -_k + n) * jacobi(_k, a, b, x) /
             ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n)) +
             jacobi(n, a, b, x)) / (_k + a + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError,
           lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))

    assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(
        Sum((S.Half - x / 2)**_k * RisingFactorial(-n, _k) *
            RisingFactorial(_k + a + 1, -_k + n) *
            RisingFactorial(a + b + n + 1, _k) / factorial(_k),
            (_k, 0, n)) / factorial(n))
    raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
Example #5
0
def test_chebyshev():
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2 * x**2 - 1
    assert chebyshevt(3, x) == 4 * x**3 - 3 * x

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, lambda: chebyshevt_root(n, n))

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, lambda: chebyshevu_root(n, n))

    n = Symbol("n")
    X = chebyshevt(n, x)
    assert isinstance(X, chebyshevt)
    assert unchanged(chebyshevt, n, x)
    assert chebyshevt(n, -x) == (-1)**n * chebyshevt(n, x)
    assert chebyshevt(-n, x) == chebyshevt(n, x)

    assert chebyshevt(n, 0) == cos(pi * n / 2)
    assert chebyshevt(n, 1) == 1
    assert chebyshevt(n, oo) is oo

    assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))

    assert diff(chebyshevt(n, x), x) == n * chebyshevu(n - 1, x)

    X = chebyshevu(n, x)
    assert isinstance(X, chebyshevu)

    y = Symbol('y')
    assert chebyshevu(n, -x) == (-1)**n * chebyshevu(n, x)
    assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
    assert unchanged(chebyshevu, -n + y, x)

    assert chebyshevu(n, 0) == cos(pi * n / 2)
    assert chebyshevu(n, 1) == n + 1
    assert chebyshevu(n, oo) is oo

    assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))

    assert diff(chebyshevu(n, x), x) == \
        (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)

    _k = Dummy('k')
    assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(
        Sum(x**(-2 * _k + n) * (x**2 - 1)**_k * binomial(n, 2 * _k),
            (_k, 0, floor(n / 2))))
    assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(
        Sum((-1)**_k * (2 * x)**(-2 * _k + n) * factorial(-_k + n) /
            (factorial(_k) * factorial(-2 * _k + n)), (_k, 0, floor(n / 2))))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
Example #6
0
def test_sympy__functions__special__polynomials__chebyshevu():
    from sympy.functions.special.polynomials import chebyshevu
    assert _test_args(chebyshevu(x, 2))