import sys import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex GA.set_main(sys.modules[__name__]) if __name__ == '__main__': tex.Format() GA.make_symbols('xbm alpha_1 delta__nugamma_r') x = alpha_1*xbm/delta__nugamma_r print 'x =',x tex.xdvi()
#!/usr/bin/python #Dirac.py import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex import sys if __name__ == '__main__': metric = '1 0 0 0,'+\ '0 -1 0 0,'+\ '0 0 -1 0,'+\ '0 0 0 -1' vars = GA.make_symbols('t x y z') GA.MV.setup('gamma_t gamma_x gamma_y gamma_z',metric,True,vars) parms = GA.make_symbols('m e') tex.Format() I = GA.MV(GA.ONE,'pseudo') nvars = len(vars) psi = GA.MV('psi','spinor',fct=True) psi.convert_to_blades() A = GA.MV('A','vector',fct=True) sig_x = gamma_x*gamma_t sig_y = gamma_y*gamma_t sig_z = gamma_z*gamma_t print '$A$ is 4-vector potential' print A print r'$\bm{\psi}$ is 8-component real spinor (even multi-vector)' print psi
#!/usr/bin/python import sys import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex GA.set_main(sys.modules[__name__]) if __name__ == '__main__': metric = '1 0 0 0,'+\ '0 -1 0 0,'+\ '0 0 -1 0,'+\ '0 0 0 -1' vars = GA.make_symbols('t x y z') GA.MV.setup('gamma_t gamma_x gamma_y gamma_z',metric,True,vars) tex.Format() I = GA.MV(1,'pseudo') I.convert_to_blades() print '$I$ Pseudo-Scalar' print 'I =',I B = GA.MV('B','vector',fct=True) E = GA.MV('E','vector',fct=True) B.set_coef(1,0,0) E.set_coef(1,0,0) B *= gamma_t E *= gamma_t B.convert_to_blades() E.convert_to_blades() J = GA.MV('J','vector',fct=True)
#EandM.py import sys import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex import sympy,numpy,time if __name__ == '__main__': metric = '1 0 0,'+\ '0 1 0,'+\ '0 0 1' GA.MV.setup('gamma_x gamma_y gamma_z',metric,True) tex.Format() coords = GA.make_symbols('r theta phi') x = r*(sympy.cos(theta)*gamma_z+sympy.sin(theta)*\ (sympy.cos(phi)*gamma_x+sympy.sin(phi)*gamma_y)) x.set_name('x') GA.MV.rebase(x,coords,'e',True) psi = GA.MV('psi','scalar',fct=True) dpsi = psi.grad() print 'Gradient of Scalar Function $\\psi$' print '\\nabla\\psi =',dpsi A = GA.MV('A','vector',fct=True) print 'Div and Curl of Vector Function $A$'
#Dirac.py import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex import sys GA.set_main(sys.modules[__name__]) if __name__ == '__main__': metric = '1 0 0 0,'+\ '0 -1 0 0,'+\ '0 0 -1 0,'+\ '0 0 0 -1' vars = GA.make_symbols('t x y z') GA.MV.setup('gamma_t gamma_x gamma_y gamma_z', metric, True, vars) parms = GA.make_symbols('m e') tex.Format() I = GA.MV(GA.ONE, 'pseudo') nvars = len(vars) psi = GA.MV('psi', 'spinor', fct=True) psi.convert_to_blades() A = GA.MV('A', 'vector', fct=True) sig_x = gamma_x * gamma_t sig_y = gamma_y * gamma_t sig_z = gamma_z * gamma_t print '$A$ is 4-vector potential' print A print r'$\bm{\psi}$ is 8-component real spinor (even multi-vector)'
import sys import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex import sympy,numpy,time GA.set_main(sys.modules[__name__]) if __name__ == '__main__': metric = '1 0 0,'+\ '0 1 0,'+\ '0 0 1' GA.MV.setup('gamma_x gamma_y gamma_z',metric,True) tex.Format() coords = GA.make_symbols('r theta phi') x = r*(sympy.cos(theta)*gamma_z+sympy.sin(theta)*\ (sympy.cos(phi)*gamma_x+sympy.sin(phi)*gamma_y)) x.set_name('x') GA.MV.rebase(x,coords,'e',True) psi = GA.MV('psi','scalar',fct=True) dpsi = psi.grad() print 'Gradient of Scalar Function $\\psi$' print '\\nabla\\psi =',dpsi A = GA.MV('A','vector',fct=True) print 'Div and Curl of Vector Function $A$'
#!/usr/local/bin/python # Dirac.py import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex import sys GA.set_main(sys.modules[__name__]) if __name__ == "__main__": metric = "1 0 0 0," + "0 -1 0 0," + "0 0 -1 0," + "0 0 0 -1" vars = GA.make_symbols("t x y z") GA.MV.setup("gamma_t gamma_x gamma_y gamma_z", metric, True, vars) parms = GA.make_symbols("m e") tex.Format() I = GA.MV(GA.ONE, "pseudo") nvars = len(vars) psi = GA.MV("psi", "spinor", fct=True) psi.convert_to_blades() A = GA.MV("A", "vector", fct=True) sig_x = gamma_x * gamma_t sig_y = gamma_y * gamma_t sig_z = gamma_z * gamma_t print "$A$ is 4-vector potential" print A print r"$\bm{\psi}$ is 8-component real spinor (even multi-vector)" print psi dirac_eq = psi.grad() * I * sig_z - e * A * psi - m * psi * gamma_t
import sys import sympy.galgebra.GA as GA import sympy.galgebra.latex_ex as tex GA.set_main(sys.modules[__name__]) if __name__ == '__main__': tex.Format() GA.make_symbols('xbm alpha_1 delta__nugamma_r') x = alpha_1 * xbm / delta__nugamma_r print 'x =', x tex.xdvi()