def limited_integrate(fa, fd, G, DE): """ Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n)) """ fa, fd = fa * Poly(1 / fd.LC(), DE.t), fd.monic() A, B, h, N, g, V = limited_integrate_reduce(fa, fd, G, DE) V = [g] + V g = A.gcd(B) A, B, V = A.quo(g), B.quo(g), [ via.cancel(vid * g, include=True) for via, vid in V ] Q, M = prde_linear_constraints(A, B, V, DE) M, _ = constant_system(M, zeros(M.rows, 1), DE) l = M.nullspace() if M == Matrix() or len(l) > 1: # Continue with param_rischDE() raise NotImplementedError("param_rischDE() is required to solve this " "integral.") elif len(l) == 0: raise NonElementaryIntegralException elif len(l) == 1: # The c1 == 1. In this case, we can assume a normal Risch DE if l[0][0].is_zero: raise NonElementaryIntegralException else: l[0] *= 1 / l[0][0] C = sum([Poly(i, DE.t) * q for (i, q) in zip(l[0], Q)]) # Custom version of rischDE() that uses the already computed # denominator and degree bound from above. B, C, m, alpha, beta = spde(A, B, C, N, DE) y = solve_poly_rde(B, C, m, DE) return ((alpha * y + beta, h), list(l[0][1:])) else: raise NotImplementedError
def limited_integrate(fa, fd, G, DE): """ Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n)) """ fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic() A, B, h, N, g, V = limited_integrate_reduce(fa, fd, G, DE) V = [g] + V g = A.gcd(B) A, B, V = A.quo(g), B.quo(g), [via.cancel(vid*g, include=True) for via, vid in V] Q, M = prde_linear_constraints(A, B, V, DE) M, _ = constant_system(M, zeros(M.rows, 1), DE) l = M.nullspace() if M == Matrix() or len(l) > 1: # Continue with param_rischDE() raise NotImplementedError("param_rischDE() is required to solve this " "integral.") elif len(l) == 0: raise NonElementaryIntegralException elif len(l) == 1: # The c1 == 1. In this case, we can assume a normal Risch DE if l[0][0].is_zero: raise NonElementaryIntegralException else: l[0] *= 1/l[0][0] C = sum([Poly(i, DE.t)*q for (i, q) in zip(l[0], Q)]) # Custom version of rischDE() that uses the already computed # denominator and degree bound from above. B, C, m, alpha, beta = spde(A, B, C, N, DE) y = solve_poly_rde(B, C, m, DE) return ((alpha*y + beta, h), list(l[0][1:])) else: raise NotImplementedError
def test_solve_poly_rde_no_cancel(): # deg(b) large DE = DifferentialExtension(extension={"D": [Poly(1, x), Poly(1 + t ** 2, t)]}) assert solve_poly_rde(Poly(t ** 2 + 1, t), Poly(t ** 3 + (x + 1) * t ** 2 + t + x + 2, t), oo, DE) == Poly(t + x, t) # deg(b) small DE = DifferentialExtension(extension={"D": [Poly(1, x)]}) assert solve_poly_rde(Poly(0, x), Poly(x / 2 - S(1) / 4, x), oo, DE) == Poly(x ** 2 / 4 - x / 4, x) DE = DifferentialExtension(extension={"D": [Poly(1, x), Poly(t ** 2 + 1, t)]}) assert solve_poly_rde(Poly(2, t), Poly(t ** 2 + 2 * t + 3, t), 1, DE) == Poly(t + 1, t, x) # deg(b) == deg(D) - 1 DE = DifferentialExtension(extension={"D": [Poly(1, x), Poly(t ** 2 + 1, t)]}) assert no_cancel_equal(Poly(1 - t, t), Poly(t ** 3 + t ** 2 - 2 * x * t - 2 * x, t), oo, DE) == ( Poly(t ** 2, t), 1, Poly((-2 - 2 * x) * t - 2 * x, t), )
def test_solve_poly_rde_no_cancel(): # deg(b) large DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t), oo, DE) == Poly(t + x, t) # deg(b) small DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert solve_poly_rde(Poly(0, x), Poly(x/2 - S(1)/4, x), oo, DE) == \ Poly(x**2/4 - x/4, x) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \ Poly(t + 1, t, x) # deg(b) == deg(D) - 1 DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert no_cancel_equal(Poly(1 - t, t), Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \ (Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t))