Example #1
0
    def _set_mpc(self, val):
        prec, rounding = self.context._prec_rounding
        tol = self.context.tol

        # norm = mpc_abs(val, prec, rounding)
        # tol = mpf_max(tol, mpf_mul(norm, tol))

        re, im = val

        if mpf_lt(mpf_abs(re, prec, rounding), tol):
            re = fzero
        if mpf_lt(mpf_abs(im, prec, rounding), tol):
            im = fzero

        self.__mpc__ = (re, im)
Example #2
0
    def _set_mpc(self, val):
        prec, rounding = self.context._prec_rounding
        tol = self.context.tol

        # norm = mpc_abs(val, prec, rounding)
        # tol = mpf_max(tol, mpf_mul(norm, tol))

        re, im = val

        if mpf_lt(mpf_abs(re, prec, rounding), tol):
            re = fzero
        if mpf_lt(mpf_abs(im, prec, rounding), tol):
            im = fzero

        self.__mpc__ = (re, im)
Example #3
0
    def _set_mpf(self, val):
        prec, rounding = self.context._prec_rounding
        tol = self.context.tol

        if mpf_lt(mpf_abs(val, prec, rounding), tol):
            self.__mpf__ = fzero
        else:
            self.__mpf__ = val
Example #4
0
    def _set_mpf(self, val):
        prec, rounding = self.context._prec_rounding
        tol = self.context.tol

        if mpf_lt(mpf_abs(val, prec, rounding), tol):
            self.__mpf__ = fzero
        else:
            self.__mpf__ = val
Example #5
0
 def __lt__(self, other):
     try:
         other = _sympify(other)
     except SympifyError:
         return False    # sympy > other
     if isinstance(other, NumberSymbol):
         return other.__ge__(self)
     if other.is_comparable: other = other.evalf()
     if isinstance(other, Number):
         return bool(mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))
     return Expr.__lt__(self, other)
Example #6
0
File: numbers.py Project: NO2/sympy
 def __lt__(self, other):
     try:
         other = _sympify(other)
     except SympifyError:
         return False    # sympy > other
     if isinstance(other, NumberSymbol):
         return other.__ge__(self)
     if other.is_comparable: other = other.evalf()
     if isinstance(other, Number):
         return bool(mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))
     return Expr.__lt__(self, other)
Example #7
0
 def __lt__(self, other):
     try:
         other = _sympify(other)
     except SympifyError:
         return False    # sympy > other  --> not <
     if isinstance(other, NumberSymbol):
         return other.__ge__(self)
     if other.is_comparable and not isinstance(other, Rational): other = other.evalf()
     if isinstance(other, Number):
         if isinstance(other, Real):
             return bool(mlib.mpf_lt(self._as_mpf_val(other._prec), other._mpf_))
         return bool(self.p * other.q < self.q * other.p)
     return Expr.__lt__(self, other)
Example #8
0
File: numbers.py Project: NO2/sympy
 def __lt__(self, other):
     try:
         other = _sympify(other)
     except SympifyError:
         return False    # sympy > other  --> not <
     if isinstance(other, NumberSymbol):
         return other.__ge__(self)
     if other.is_comparable and not isinstance(other, Rational):
         other = other.evalf()
     if isinstance(other, Number):
         if isinstance(other, Real):
             return bool(mlib.mpf_lt(self._as_mpf_val(other._prec), other._mpf_))
         return bool(self.p * other.q < self.q * other.p)
     return Expr.__lt__(self, other)
Example #9
0
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow((xre or fzero, xim or fzero), (yre or fzero, yim), target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None
Example #10
0
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow(
            (xre or fzero, xim or fzero), (yre or fzero, yim),
            target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None