Example #1
0
def main():
	starttime = time()
	min = ubound
	best = 1
	
	for n in range(2,ubound):
		t = totient(n)
		if ispermut(t, n):
			if min * t > n:
				min = n / t
				best = n
				print("New best:", n, "-->", min, "after", round(time() - starttime,3), "seconds")
	
	print(best, totient(best))
	print("Completed in", time() - starttime, "seconds.")
def pohlig_helman(Y, g, p):
	print("Solving 0x%s = 0x%s^x (mod 0x%s)" % (hex(Y), hex(g), hex(p)))
	#print(factorint(p))

	t1 = time.clock()
	n = totient(p)
	t2 = time.clock()
	q = factorint(n)
	t3 = time.clock()

	print("totient(%i) = %i" % (p, n))
	print("factor(%i) = %s" % (n, str(q)))

	print("totient time: " + str(t2-t1))
	print("factor time: " + str(t3-t2))

	t4 = time.clock()
	x_is = list()
	mods = list()
	for p_i in q:
		e = q[p_i]
		
		x_i = solve_xi(Y, g, p, p_i, e, n)
		print("x = %i mod %i" % (x_i, pow(p_i, e)))
		x_is.append(x_i)
		mods.append(pow(p_i, e))
	x = chinese_remainder(mods, x_is)

	t5 = time.clock()

	print("x = %i" % x)
	print("ph time: " + str(t5-t4))

	return x
Example #3
0
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(sieve.primerange(10, 1)) == []
    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
Example #4
0
def average_matching_polynomial(q, polynomial_generator):
    p1 = polynomial_generator(1)
    q_plus_one_polys = [
        q * (q - 1) // 2 * totient(d) *
        p1**((q + 1) // d - 1) * (polynomial_product(
            polynomial_generator, nth_unity_roots_not_one(d)))**((q + 1) // d)
        for d in divisors_over_one(q + 1)
    ]
    q_minus_one_polys = [
        q * (q + 1) // 2 * totient(d) * p1 *
        (polynomial_product(polynomial_generator, nth_unity_roots(d)))**(
            (q - 1) // d) for d in divisors_over_one(q - 1)
    ]
    res = p1 ** q + \
        (q*q-1)*polynomial_product(polynomial_generator, nth_unity_roots(q)) + \
        sum(q_plus_one_polys) + sum(q_minus_one_polys)
    return res / (q**3 - q)
Example #5
0
 def a3(n):
     from sympy.ntheory import totient, divisors
     from math import factorial
     binomial = lambda n, k: factorial(n) / factorial(k) / factorial(n - k)
     out = 0
     for d in [1, n]:
         out += (totient(n / d) * binomial(3 * d, d)) % 1000000009
     return out * pow(n, 10**9 + 7, 10**9 + 9)
Example #6
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2 ** 100) == 2 ** 99

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3 ** 10) == 3 ** 10 - 3 ** 9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer
def euler243():
    from sympy.ntheory import totient
    d = 10
    while True:
        if d % 100 == 0: print d
        if totient(d) * 94744 < 15499 * (d - 1):
            print d
            break
        d += 1
Example #8
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == \
        [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2**100) == 2**99

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3**10) == 3**10 - 3**9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer
def necklaces(k, n):
    list_of_a = divisors(n)

    S = 0

    for a in list_of_a:
        b = n // a
        PHI_A = totient(a)
        S += PHI_A * k ** b

    return S // n
Example #10
0
def test(totients,n):
	print "Starting Test"
	a = totients
	b = correctTotients(n)
	if a==b:
		print "Pass!"
	for i in range(len(a)):
		if a[i]!=b[i]:
			print i,totient(i),a[i],b[i]
			print "Fail!"
			break
def euler70():
    from sympy.ntheory import totient
    n = 0
    n_over_phi_n = 100000
    for i in range(2,10**7):
        if i%10000==0: print i
        temp = totient(i)
        if sorted([int(j) for j in str(temp)])==sorted([int(j) for j in str(i)]):
            if float(i)/temp<n_over_phi_n:
                n = i
                n_over_phi_n = float(i)/temp
    return n
Example #12
0
def main():
	max = 0
	best = 1
	
	for n in range(1,ubound):
		cur = n / totient(n)
		if cur > max:
			print("New best:", n, "-->", cur)
			max = cur
			best = n
	
	print(best)
Example #13
0
def chain(n):
    n -= 1  # if n is prime, then totient(n) = n - 1
    m = n
    s = 0
    while n > 1:
        if n in cache:
            s += cache[n]
            break
        n = totient(n)
        s += 1
    cache[m] = s
    return s + 2 == CHAIN_LEN
Example #14
0
 def _mod_nest_exp(seq, m):
     if m == 1: # 1 divides every integer
         return 0
     if len(seq) == 2: # recursive base case
         return powmod(seq[0], seq[1], m)
     
     b, e = seq[0], seq[1:] # base and exponent
     g = gcd(b, m)
     if g == 1:
         return powmod(b, _mod_nest_exp(e, totient(m)), m)
     
     n, k = m//g, 1
     g_ = gcd(g, n)
     while g_ > 1:
         n //= g_
         k += 1
         g_ = gcd(g, n)
     h = m//n
     _, x, y = ext_gcd(n, h)
     return (h*(y%n)*powmod(b, _mod_nest_exp(e, totient(n)), n)+
             n*(x%h)*(powmod(b, pow_list(e), h) if pow_lt(e, k) else 0))%m
Example #15
0
def test_generate():
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
Example #16
0
def rsa_private_key(p, q, e):
    r"""
    The RSA *private key* is the pair `(n,d)`, where `n`
    is a product of two primes and `d` is the inverse of
    `e` (mod `\phi(n)`).

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_private_key
    >>> p, q, e = 3, 5, 7
    >>> rsa_private_key(p, q, e)
    (15, 7)

    """
    n = p * q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, pow(e, phi - 1, phi)
    return False
Example #17
0
def rsa_private_key(p, q, e):
    r"""
    The RSA *private key* is the pair `(n,d)`, where `n`
    is a product of two primes and `d` is the inverse of
    `e` (mod `\phi(n)`).

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_private_key
    >>> p, q, e = 3, 5, 7
    >>> rsa_private_key(p, q, e)
    (15, 7)

    """
    n = p*q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, pow(e, phi - 1, phi)
    return False
Example #18
0
def rsa_public_key(p, q, e):
    r"""
    The RSA *public key* is the pair `(n,e)`, where `n`
    is a product of two primes and `e` is relatively
    prime (coprime) to the Euler totient `\phi(n)`.

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_public_key
    >>> p, q, e = 3, 5, 7
    >>> n, e = rsa_public_key(p, q, e)
    >>> n
    15
    >>> e
    7

    """
    n = p*q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, e
    return False
Example #19
0
def rsa_public_key(p, q, e):
    r"""
    The RSA *public key* is the pair `(n,e)`, where `n`
    is a product of two primes and `e` is relatively
    prime to the Euler totient `\phi(n)`.

    Examples
    ========

    >>> from sympy.crypto.crypto import rsa_public_key
    >>> p, q, e = 3, 5, 7
    >>> n, e = rsa_public_key(p, q, e)
    >>> n
    15
    >>> e
    7

    """
    n = p * q
    phi = totient(n)
    if isprime(p) and isprime(q) and gcd(e, phi) == 1:
        return n, e
    return False
Example #20
0
def findAVulnerablePrime(bitSize):
    generator = 65537
    m = nt.primorial(prime_default(bitSize), False)

    max_order = nt.totient(m)
    max_order_factors = nt.factorint(max_order)

    order = element_order_general(generator, m, max_order, max_order_factors)
    order_factors = nt.factorint(order)

    power_range = [0, order - 1]
    min_prime = g.bit_set(
        g.bit_set(g.mpz(0), bitSize // 2 - 1), bitSize // 2 - 2
    )  # g.add(pow(g.mpz(2), (length / 2 - 1)), pow(g.mpz(2), (length / 2 - 2)))
    max_prime = g.bit_set(
        min_prime, bitSize // 2 - 4
    )  # g.sub(g.add(min_prime, pow(g.mpz(2), (length / 2 - 4))), g.mpz(1))
    multiple_range = [g.f_div(min_prime, m), g.c_div(max_prime, m)]

    random_state = g.random_state(random.SystemRandom().randint(0, 2**256))

    return random_prime(random_state,
                        nt.primorial(prime_default(bitSize), False), generator,
                        power_range, multiple_range)
Example #21
0
from sympy.ntheory import totient, factorint


def is_perm(a, b):
    return sorted(str(a)) == sorted(str(b))


minRatio = 10**8
minN = 1
for n in range(3, 10**7 + 1, 2):
    totientN = totient(n)
    if is_perm(n, totientN) and (n / totientN) < minRatio:
        minN = n
        minRatio = n / totientN

print(minN, totient(minN), factorint(minN).items())
Example #22
0
def R(d):
    return Fraction(totient(d), d - 1)
Example #23
0
__author__ = 'Prateek'
from sympy.ntheory import factorint
from sympy.ntheory import totient


def phi2(n):
    value = n
    for prime, exp in factorint(n).items():
        value = value * (1 - prime ** -1)
    return int(value)


if __author__ == 'Prateek':
    print phi2(666)
    print totient(666)
Example #24
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
          (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
          (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13*7) == 1
    assert mobius(1) == 1
    assert mobius(13*7*5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))
Example #25
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345
    assert sqrt_mod(67, 101) == None
    assert sqrt_mod(1020, 104729) == None

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is True
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    assert is_nthpow_residue(36010, 8, 87382) is True
    assert is_nthpow_residue(28552, 6, 2218) is True
    assert is_nthpow_residue(92712, 9, 50026) is True
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048)
                if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([pow(i, 11, 324000) for i in range(1000)])
    assert [is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([pow(i, 17, 22217575536) for i in range(1000)])
    assert [is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)

    assert nthroot_mod(29, 31, 74) == [45]
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    assert nthroot_mod(16, 5, 36, True) == [4, 22]
    assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33]
    assert nthroot_mod(4, 3, 3249000) == []
    assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174]
    assert nthroot_mod(0, 12, 37, True) == [0]
    assert nthroot_mod(0, 7, 100,
                       True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
    assert nthroot_mod(4, 4, 27, True) == [5, 22]
    assert nthroot_mod(4, 4, 121, True) == [19, 102]
    assert nthroot_mod(2, 3, 7, True) == []

    for p in range(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res == []

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
    raises(ValueError,
           lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))

    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
    args = 5779, 3528, 6215
    assert discrete_log(*args) == 687
    assert discrete_log(*Tuple(*args)) == 687
    assert quadratic_congruence(400, 85, 125,
                                1600) == [295, 615, 935, 1255, 1575]
    assert quadratic_congruence(3, 6, 5, 25) == [3, 20]
    assert quadratic_congruence(120, 80, 175, 500) == []
    assert quadratic_congruence(15, 14, 7, 2) == [1]
    assert quadratic_congruence(8, 15, 7, 29) == [10, 28]
    assert quadratic_congruence(160, 200, 300, 461) == [144, 431]
    assert quadratic_congruence(
        100000, 123456, 7415263,
        48112959837082048697) == [30417843635344493501, 36001135160550533083]
    assert quadratic_congruence(65, 121, 72, 277) == [249, 252]
    assert quadratic_congruence(5, 10, 14, 2) == [0]
    assert quadratic_congruence(10, 17, 19, 2) == [1]
    assert quadratic_congruence(10, 14, 20, 2) == [0, 1]
    assert polynomial_congruence(
        6 * x**5 + 10 * x**4 + 5 * x**3 + x**2 + x + 1, 972000) == [
            220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999
        ]

    assert polynomial_congruence(x**3 - 10 * x**2 + 12 * x - 82,
                                 33075) == [30287]
    assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615]
    assert polynomial_congruence(10 * x**2 + 14 * x + 20, 2) == [0, 1]
    assert polynomial_congruence(x**3 + 3, 16) == [5]
    assert polynomial_congruence(65 * x**2 + 121 * x + 72, 277) == [249, 252]
    assert polynomial_congruence(35 * x**3 - 6 * x**2 - 567 * x + 2308,
                                 148225) == [86957, 111157, 122531, 146731]
    assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33]
    assert polynomial_congruence(x**6 - 2 * x**5 - 35, 6125) == [3257]
    raises(ValueError, lambda: polynomial_congruence(x**x, 6125))
    raises(ValueError, lambda: polynomial_congruence(x**i, 6125))
    raises(ValueError, lambda: polynomial_congruence(0.1 * x**2 + 6, 100))
Example #26
0
def unrelated(n):
    """The amount of numbers less than n that are neither coprime to
    nor divisors of n."""
    return n - nthry.totient(n) - nthry.divisor_count(n) + 1
Example #27
0
import time
from sympy.ntheory import totient
from sympy.core.numbers import igcd

N = 2019
a = 2019
z = 10**2019
start_time = time.time()
aa = a  # Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ основания Π΅ΡΡ‚ΡŒ 2019
for i in range(N - 1):
    r = aa % totient(z)  # ΠΌΠ΅Ρ‚ΠΎΠ΄ totient высчитываСт Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ эйлСра
    aa = pow(a, r, z)  # a^r (mod z)
print(aa)
print('Π—Π°Ρ‚Ρ€Π°Ρ‡Π΅Π½Π½ΠΎΠ΅ врСмя = ', time.time() - start_time)
Example #28
0
    
    f_tot = 0
    
    f_num_rng = np.arange(0, n)
        
    for i in ittr.product(f_num_rng, repeat=6):  
        sq = np.square(np.array(i))
        if np.gcd(sq.sum(), np.power(n, 2)) == 1:
            f_tot += 1
    return f_tot


cdef double g_worker(long k_val):
    cdef double numerator, denominator
    numerator = f(k_val)
    denominator = np.power(k_val, 2) * totient(k_val)
    return numerator / denominator


cdef double G(long gn):
    g_tot = 0.
    k_rng = np.arange(1, gn + 1)
    
    for k in k_rng:
        g_tot += (g_worker(k) % MOD)

    return g_tot



cdef long N = np.uint32(1e5)
Example #29
0
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
Example #30
0
from sympy.ntheory import totient

limit = 1000001
solution = 0

print(sum(totient(n) for n in range(2, limit)))
Example #31
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))
Example #32
0
q = 7  # "prime q"
n = p * q  # modulus
z = (p - 1) * (q - 1)  # Euler totient
e = 5  # encryption/public exponent
assert math.gcd(e, z) == 1
d = 29  # decryption/private exponent
assert (e * d - 1) % z == 0

m = 12  # plaintext
c = pow(m, e, n)  # ciphertext
assert c is 17

m_new = pow(c, d, n)  # plaintext?...
assert m == m_new  # ... yes!

assert z == totient(p) * totient(q) == totient(n)

# ============================================================================
# RSA with more realistic data
# ============================================================================

#
# RSA prime factors
#
num_bits = 1024
lower = 1 << (num_bits - 1)
upper = (1 << num_bits) - 1

assert lower.bit_length() == upper.bit_length() == num_bits
assert (lower - 1).bit_length() == num_bits - 1
assert (upper + 1).bit_length() == num_bits + 1
Example #33
0
from sympy import gcd
from sympy.ntheory import totient

max_d = 10**6

n_fracs = 0
for n in range(2, max_d + 1):
    n_fracs += totient(n)
    if n % 10**5 == 0:
        print(n, n_fracs)

print(n_fracs)
Example #34
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is False
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048)
                if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([pow(i, 11, 324000) for i in range(1000)])
    assert [is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([pow(i, 17, 22217575536) for i in range(1000)])
    assert [is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    raises(NotImplementedError, lambda: nthroot_mod(16, 5, 36))
    raises(NotImplementedError, lambda: nthroot_mod(9, 16, 36))

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
Example #35
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is False
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([ pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048) if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([ pow(i, 11, 324000) for i in range(1000)])
    assert [ is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([ pow(i, 17, 22217575536) for i in range(1000)])
    assert [ is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(29, 31, 74) == 31
    assert nthroot_mod(*Tuple(29, 31, 74)) == 31
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
          (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
          (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    raises(NotImplementedError, lambda: nthroot_mod(16, 5, 36))
    raises(NotImplementedError, lambda: nthroot_mod(9, 16, 36))

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13*7) == 1
    assert mobius(1) == 1
    assert mobius(13*7*5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
    raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))

    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
    args = 5779, 3528, 6215
    assert discrete_log(*args) == 687
    assert discrete_log(*Tuple(*args)) == 687
Example #36
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
Example #37
0
def sumtot(j):
	result = 0
	for k in range(n//(j+1)+1, n//j +1):
		#result = modf(result+totient(k))
		result = result+totient(k)
	return result
Example #38
0
def correctTotients(n):
	totients = [0]*(n+1)
	for i in range(1,len(totients)):
		totients[i]=totient(i)
	return totients
Example #39
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == \
        [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2**100) == 2**99

    raises(ValueError, lambda: totient(30.1))
    raises(ValueError, lambda: totient(20.001))

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3**10) == 3**10 - 3**9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer

    x=Symbol("x", integer=False)
    raises(ValueError, lambda: totient(x))

    y=Symbol("y", positive=False)
    raises(ValueError, lambda: totient(y))

    z=Symbol("z", positive=True, integer=True)
    raises(ValueError, lambda: totient(2**(-z)))
Example #40
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == \
        [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
Example #41
0
#	if j%100==0:
#		print("Processing j = ", j)
#	PSI.append(totientsum(n//j))
#	j+=1
#print("Done with totient sums")

#with open('sumstot.txt', 'wb') as f:
	#pickle.dump(PSI, f)

with open('sumstot.txt', 'rb') as f:
	PSI = pickle.load(f)

#print("Computing L")
L = 1
for j in range(2, int(sqrt(n))+1):
	L = mod(L*mod(int(pow(n//j+1, totient(j), 1000000007))))
#print("L - Part 1 complete")
for j in range(1, int(sqrt(n))+1): # sometimes up to sqrt(n), sometimes just below
	L = mod(L*mod(int(pow(j+1, PSI[j-1]-PSI[j], 1000000007))))
	#L = mod(L*mod(int(pow(j+1, sumtot(j)))))
L = mod(L*(n+1))
#print("L - Part 2 complete")
#print("Done with L")

L8 = mod(int(pow(L, 8)))
L4 = mod(int(pow(L, 4)))

#print("Computing T")
T  = 0
for j in range(2, int(sqrt(n))+1):
	T = mod(T+(2*(n//j)*L4 - (n//j)*(n//j))*totient(j))
Example #42
0
# Very slow (90s), but short
from sympy.ntheory import totient

print(sum(totient(i) for i in range(2, 1000001)))
Example #43
0
def tet(a, x, p):
    if p == 1 or x == 0:
        return 1
    phi = totient(p)
    return pow(a, tet(a, x - 1, phi), p)
Example #44
0
def test_totient():
    assert [totient(k) for k in range(1, 12)] == \
        [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
    assert totient(5005) == 2880
    assert totient(5006) == 2502
    assert totient(5009) == 5008
    assert totient(2**100) == 2**99

    raises(ValueError, lambda: totient(30.1))
    raises(ValueError, lambda: totient(20.001))

    m = Symbol("m", integer=True)
    assert totient(m)
    assert totient(m).subs(m, 3**10) == 3**10 - 3**9
    assert summation(totient(m), (m, 1, 11)) == 42

    n = Symbol("n", integer=True, positive=True)
    assert totient(n).is_integer

    x=Symbol("x", integer=False)
    raises(ValueError, lambda: totient(x))

    y=Symbol("y", positive=False)
    raises(ValueError, lambda: totient(y))

    z=Symbol("z", positive=True, integer=True)
    raises(ValueError, lambda: totient(2**(-z)))
Example #45
0
 def f(n):
     if n == 1: return 1
     return (totient(n) * (pow(n, n) - 1) / (n - 1)) % (n + 1)