def test_normal(): Float.store() Float.setdps(20) N = Normal(0, 1) assert N.mean == 0 assert N.variance == 1 assert N.probability(-1, 1) == erf(1/sqrt(2)) assert N.probability(-1, 0) == erf(1/sqrt(2))/2 N = Normal(2, 4) assert N.mean == 2 assert N.variance == 16 assert N.confidence(1) == (-oo, oo) assert N.probability(1, 3) == erf(1/sqrt(32)) for p in [0.1, 0.3, 0.7, 0.9, 0.995]: a, b = N.confidence(p) assert operator.abs(float(N.probability(a, b).evalf()) - p) < 1e-10 Float.revert()
def npartitions(n): """ Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers. P(n) is computed using a straightforward implementation of the Hardy-Ramanujan-Rademacher formula, described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html The speed is decent up to n = 10**5 or so. The function has been tested to give the correct result for n = 10**6. """ n = int(n) if n < 0: return 0 if n <= 5: return [1, 1, 2, 3, 5, 7][n] from sympy.core.numbers import gcd from sympy.numerics import Float from sympy.numerics.functions import pi_float, sqrt, exp, log, cos def frac(x): return x - int(x) def D(n, j): pi = pi_float() a = sqrt(Float(2)/3) * pi / j b = Float(n) - Float(1)/24 c = sqrt(b) expa = exp(a*c) iexpa = Float(1)/expa ch = (expa + iexpa)*0.5 sh = (expa - iexpa)*0.5 return sqrt(j) / (2*sqrt(2)*b*pi) * (a*ch-sh/c) def A(n, j): if j == 1: return Float(1) s = Float(0) pi = pi_float() for h in xrange(1, j): if gcd(h,j) == 1: s += cos((g(h,j)-2*h*n)*pi/j) return s def g(h, j): if j < 3: return Float(0) s = Float(0) for k in xrange(1, j): s += k*(frac(h*Float(k)/j)-0.5) return s # estimate number of digits in p(n) pdigits = int((pi_float()*sqrt(2.0*n/3)-log(4*n))/log(10)+1) Float.store() Float.setdps(pdigits*1.1 + 10) s = Float(0) M = max(6, int(0.24*sqrt(n)+4)) for q in xrange(1, M): s += A(n,q) * D(n,q) p = int(s + 0.5) Float.revert() return p