Example #1
0
def test_operations():
    F = QQ.old_poly_ring(x).free_module(2)
    G = QQ.old_poly_ring(x).free_module(3)
    f = F.identity_hom()
    g = homomorphism(F, F, [0, [1, x]])
    h = homomorphism(F, F, [[1, 0], 0])
    i = homomorphism(F, G, [[1, 0, 0], [0, 1, 0]])

    assert f == f
    assert f != g
    assert f != i
    assert (f != F.identity_hom()) is False
    assert 2 * f == f * 2 == homomorphism(F, F, [[2, 0], [0, 2]])
    assert f / 2 == homomorphism(F, F, [[S.Half, 0], [0, S.Half]])
    assert f + g == homomorphism(F, F, [[1, 0], [1, x + 1]])
    assert f - g == homomorphism(F, F, [[1, 0], [-1, 1 - x]])
    assert f * g == g == g * f
    assert h * g == homomorphism(F, F, [0, [1, 0]])
    assert g * h == homomorphism(F, F, [0, 0])
    assert i * f == i
    assert f([1, 2]) == [1, 2]
    assert g([1, 2]) == [2, 2 * x]

    assert i.restrict_domain(F.submodule([x, x]))([x, x]) == i([x, x])
    h1 = h.quotient_domain(F.submodule([0, 1]))
    assert h1([1, 0]) == h([1, 0])
    assert h1.restrict_domain(h1.domain.submodule([x, 0]))([x, 0]) == h([x, 0])

    raises(TypeError, lambda: f / g)
    raises(TypeError, lambda: f + 1)
    raises(TypeError, lambda: f + i)
    raises(TypeError, lambda: f - 1)
    raises(TypeError, lambda: f * i)
Example #2
0
def test_to_Sequence_Initial_Coniditons():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    n = symbols('n', integer=True)
    _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
    q = [(HolonomicSequence(-1 + (n + 1) * Sn, 1), 0)]
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence()
    q = [(HolonomicSequence(1 + (n**2 + 3 * n + 2) * Sn**2, [0, 1]), 0)]
    assert p == q
    p = HolonomicFunction(Dx**2 + 1 + x**3 * Dx, x, 0, [2, 3]).to_sequence()
    q = [(HolonomicSequence(
        n + Sn**2 + (n**2 + 7 * n + 12) * Sn**4,
        [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)]
    assert p == q
    p = HolonomicFunction(x**3 * Dx**5 + 1 + Dx, x).to_sequence()
    q = [(HolonomicSequence(1 + (n + 1) * Sn +
                            (n**5 - 5 * n**3 + 4 * n) * Sn**2), 0, 3)]
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1 + x**2))
    q = [(HolonomicSequence(n**2 + (n**2 + 2 * n) * Sn**2, [0, 0, C_2]), 0, 1)]
    assert p.to_sequence() == q
    p = p.diff()
    q = [(HolonomicSequence((n + 2) + (n + 2) * Sn**2, [C_0, 0]), 1, 0)]
    assert p.to_sequence() == q
    p = expr_to_holonomic(erf(x) + x).to_sequence()
    q = [(HolonomicSequence(
        (2 * n**2 - 2 * n) + (n**3 + 2 * n**2 - n - 2) * Sn**2,
        [0, 1 + 2 / sqrt(pi), 0, C_3]), 0, 2)]
    assert p == q
Example #3
0
def test_QuotientRing():
    I = QQ.old_poly_ring(x).ideal(x**2 + 1)
    R = QQ.old_poly_ring(x) / I

    assert R == QQ.old_poly_ring(x) / [x**2 + 1]
    assert R == QQ.old_poly_ring(x) / QQ.old_poly_ring(x).ideal(x**2 + 1)
    assert R != QQ.old_poly_ring(x)

    assert R.convert(1) / x == -x + I
    assert -1 + I == x**2 + I
    assert R.convert(ZZ(1), ZZ) == 1 + I
    assert R.convert(R.convert(x), R) == R.convert(x)

    X = R.convert(x)
    Y = QQ.old_poly_ring(x).convert(x)
    assert -1 + I == X**2 + I
    assert -1 + I == Y**2 + I
    assert R.to_sympy(X) == x

    raises(ValueError,
           lambda: QQ.old_poly_ring(x) / QQ.old_poly_ring(x, y).ideal(x))

    R = QQ.old_poly_ring(x, order="ilex")
    I = R.ideal(x)
    assert R.convert(1) + I == (R / I).convert(1)
Example #4
0
 def denom(self, a):
     """Get the denominator of ``a``."""
     ZZ = self.dom.get_ring()
     QQ = self.dom
     ZZ_I = self.get_ring()
     denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
     return ZZ_I(denom_ZZ, ZZ.zero)
Example #5
0
def test_pickling_polys_polyclasses():
    from sympy.polys.polyclasses import DMP, DMF, ANP

    for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)):
        check(c)
    for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)):
        check(c)
    for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)):
        check(c)
Example #6
0
def test_prde_no_cancel():
    # b large
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
        ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                        [0, 1, 0, -1]], x))
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
        ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                                 [0, 1, 0, -1]], x))
    assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \
        ([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1,  0,  0],
                                                                    [1,  0, -1,  0],
                                                                    [0,  1,  0, -1]], x))
    # b small
    # XXX: Is there a better example of a monomial with D.degree() > 2?
    DE = DifferentialExtension(
        extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})

    # My original q was t**4 + t + 1, but this solution implies q == t**4
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [
        Poly(t**6, t),
        Poly(x * t**5, t),
        Poly(t**3, t),
        Poly(x * t**2, t),
        Poly(1 + x, t)
    ]
    R = QQ.frac_field(x)[t]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (Rational(-11, 12) - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (Rational(-1, 3) + x**3/6)*t - x/6, t), Poly(t, t),
        Poly(0, t), Poly(0, t)], Matrix([[1, 0,              -1, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 1, Rational(-1, 4), 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 1, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 0, 1,  0,  0,  0,  0,  0],
                                         [1, 0,               0, 0, 0, -1,  0,  0,  0,  0],
                                         [0, 1,               0, 0, 0,  0, -1,  0,  0,  0],
                                         [0, 0,               1, 0, 0,  0,  0, -1,  0,  0],
                                         [0, 0,               0, 1, 0,  0,  0,  0, -1,  0],
                                         [0, 0,               0, 0, 1,  0,  0,  0,  0, -1]], ring=R))

    # TODO: Add test for deg(b) <= 0 with b small
    DE = DifferentialExtension(
        extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
    b = Poly(-1 / x**2, t, field=True)  # deg(b) == 0
    q = [Poly(x**i * t**j, t, field=True) for i in range(2) for j in range(3)]
    h, A = prde_no_cancel_b_small(b, q, 3, DE)
    V = A.nullspace()
    R = QQ.frac_field(x)[t]
    assert len(V) == 1
    assert V[0] == Matrix([Rational(-1, 2), 0, 0, 1, 0, 0] * 3, ring=R)
    assert (Matrix([h]) * V[0][6:, :])[0] == Poly(x**2 / 2, t, domain='QQ(x)')
    assert (Matrix([q]) * V[0][:6, :])[0] == Poly(x - S.Half,
                                                  t,
                                                  domain='QQ(x)')
Example #7
0
def test_negative_power():
    x = symbols("x")
    _, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    h1 = HolonomicFunction((-1) + (x) * Dx, x)**-2
    h2 = HolonomicFunction((2) + (x) * Dx, x)

    assert h1 == h2
Example #8
0
def test_to_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper()
    q = 3 * hyper([], [], 2 * x)
    assert p == q
    p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0,
                                      [2]).to_hyper()).expand()
    q = 2 * x**3 + 6 * x**2 + 6 * x + 2
    assert p == q
    p = HolonomicFunction((1 + x) * Dx**2 + Dx, x, 0, [0, 1]).to_hyper()
    q = -x**2 * hyper((2, 2, 1), (3, 2), -x) / 2 + x
    assert p == q
    p = HolonomicFunction(2 * x * Dx + Dx**2, x, 0,
                          [0, 2 / sqrt(pi)]).to_hyper()
    q = 2 * x * hyper((S.Half, ), (Rational(3, 2), ), -x**2) / sqrt(pi)
    assert p == q
    p = hyperexpand(
        HolonomicFunction(2 * x * Dx + Dx**2, x, 0,
                          [1, -2 / sqrt(pi)]).to_hyper())
    q = erfc(x)
    assert p.rewrite(erfc) == q
    p = hyperexpand(
        HolonomicFunction((x**2 - 1) + x * Dx + x**2 * Dx**2, x, 0,
                          [0, S.Half]).to_hyper())
    q = besselj(1, x)
    assert p == q
    p = hyperexpand(
        HolonomicFunction(x * Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper())
    q = besselj(0, x)
    assert p == q
Example #9
0
def test_addition_initial_condition():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, [3])
    q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
    r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2])
    assert p + q == r
    p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2])
    q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
    r = HolonomicFunction((-x**4 - x**3/4 - x**2 + Rational(1, 4)) + (x**3 + x**2/4 + x*Rational(3, 4) + 1)*Dx + \
        (x*Rational(-3, 2) + Rational(7, 4))*Dx**2 + (x**2 - x*Rational(7, 4) + Rational(1, 4))*Dx**3 + (x**2 + x/4 + S.Half)*Dx**4, x, 0, [2, 2, -2, 2])
    assert p + q == r
    p = HolonomicFunction(Dx**2 + 4 * x * Dx + x**2, x, 0, [3, 4])
    q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
    r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \
         (x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \
            10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17])
    assert p + q == r
    q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1])
    p = HolonomicFunction(Dx - 1, x, 2, [1])
    r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \
        (x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ])
    assert p + q == r
    p = expr_to_holonomic(sin(x))
    q = expr_to_holonomic(1 / x, x0=1)
    r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \
        x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2])
    assert p + q == r
    C_1 = symbols('C_1')
    p = expr_to_holonomic(sqrt(x))
    q = expr_to_holonomic(sqrt(x**2 - x))
    r = (p + q).to_expr().subs(C_1, -I / 2).expand()
    assert r == I * sqrt(x) * sqrt(-x + 1) + sqrt(x)
Example #10
0
def test_properties():
    R = QQ.old_poly_ring(x, y)
    F = R.free_module(2)
    h = homomorphism(F, F, [[x, 0], [y, 0]])
    assert h.kernel() == F.submodule([-y, x])
    assert h.image() == F.submodule([x, 0], [y, 0])
    assert not h.is_injective()
    assert not h.is_surjective()
    assert h.restrict_codomain(h.image()).is_surjective()
    assert h.restrict_domain(F.submodule([1, 0])).is_injective()
    assert h.quotient_domain(h.kernel()).restrict_codomain(
        h.image()).is_isomorphism()

    R2 = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
    F = R2.free_module(2)
    h = homomorphism(F, F, [[x, 0], [y, y + 1]])
    assert h.is_isomorphism()
Example #11
0
def test_RecurrenceOperator():
    n = symbols('n', integer=True)
    R, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
    assert Sn * n == (n + 1) * Sn
    assert Sn * n**2 == (n**2 + 1 + 2 * n) * Sn
    assert Sn**2 * n**2 == (n**2 + 4 * n + 4) * Sn**2
    p = (Sn**3 * n**2 + Sn * n)**2
    q = (n**2 + 3*n + 2)*Sn**2 + (2*n**3 + 19*n**2 + 57*n + 52)*Sn**4 + (n**4 + 18*n**3 + \
        117*n**2 + 324*n + 324)*Sn**6
    assert p == q
Example #12
0
def test_printing():
    R = QQ.old_poly_ring(x)

    assert str(homomorphism(R.free_module(1), R.free_module(1), [0])) == \
        'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1'
    assert str(homomorphism(R.free_module(2), R.free_module(2), [0, 0])) == \
        'Matrix([                       \n[0, 0], : QQ[x]**2 -> QQ[x]**2\n[0, 0]])                       '
    assert str(homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])) == \
        'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1/<[x]>'
    assert str(R.free_module(
        0).identity_hom()) == 'Matrix(0, 0, []) : QQ[x]**0 -> QQ[x]**0'
Example #13
0
def test_constant_system():
    A = Matrix([[-(x + 3) / (x - 1), (x + 1) / (x - 1), 1],
                [-x - 3, x + 1, x - 1], [2 * (x + 3) / (x - 1), 0, 0]], t)
    u = Matrix([[(x + 1) / (x - 1)], [x + 1], [0]], t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    R = QQ.frac_field(x)[t]
    assert constant_system(A, u, DE) == \
        (Matrix([[1, 0, 0],
                 [0, 1, 0],
                 [0, 0, 0],
                 [0, 0, 1]], ring=R), Matrix([0, 1, 0, 0], ring=R))
Example #14
0
def test_creation():
    F = QQ.old_poly_ring(x).free_module(3)
    G = QQ.old_poly_ring(x).free_module(2)
    SM = F.submodule([1, 1, 1])
    Q = F / SM
    SQ = Q.submodule([1, 0, 0])

    matrix = [[1, 0], [0, 1], [-1, -1]]
    h = homomorphism(F, G, matrix)
    h2 = homomorphism(Q, G, matrix)
    assert h.quotient_domain(SM) == h2
    raises(ValueError, lambda: h.quotient_domain(F.submodule([1, 0, 0])))
    assert h2.restrict_domain(SQ) == homomorphism(SQ, G, matrix)
    raises(ValueError, lambda: h.restrict_domain(G))
    raises(ValueError, lambda: h.restrict_codomain(G.submodule([1, 0])))
    raises(ValueError, lambda: h.quotient_codomain(F))

    im = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
    for M in [F, SM, Q, SQ]:
        assert M.identity_hom() == homomorphism(M, M, im)
    assert SM.inclusion_hom() == homomorphism(SM, F, im)
    assert SQ.inclusion_hom() == homomorphism(SQ, Q, im)
    assert Q.quotient_hom() == homomorphism(F, Q, im)
    assert SQ.quotient_hom() == homomorphism(SQ.base, SQ, im)

    class conv:
        def convert(x, y=None):
            return x

    class dummy:
        container = conv()

        def submodule(*args):
            return None

    raises(TypeError, lambda: homomorphism(dummy(), G, matrix))
    raises(TypeError, lambda: homomorphism(F, dummy(), matrix))
    raises(
        ValueError,
        lambda: homomorphism(QQ.old_poly_ring(x, y).free_module(3), G, matrix))
    raises(ValueError, lambda: homomorphism(F, G, [0, 0]))
Example #15
0
def get_num_denom(c):
    r"""
    Given any argument on which :py:func:`~.is_rat` is ``True``, return the
    numerator and denominator of this number.

    See Also
    ========

    is_rat

    """
    r = QQ(c)
    return r.numerator, r.denominator
Example #16
0
def test_solve_triangulated():
    f_1 = x**2 + y + z - 1
    f_2 = x + y**2 + z - 1
    f_3 = x + y + z**2 - 1

    a, b = sqrt(2) - 1, -sqrt(2) - 1

    assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    dom = QQ.algebraic_field(sqrt(2))

    assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
Example #17
0
def test_RecurrenceOperatorEqPoly():
    n = symbols('n', integer=True)
    R, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
    rr = RecurrenceOperator([n**2, 0, 0], R)
    rr2 = RecurrenceOperator([n**2, 1, n], R)
    assert not rr == rr2

    # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799
    # should work once that is solved
    # d = rr.listofpoly[0]
    # assert rr == d

    d2 = rr2.listofpoly[0]
    assert not rr2 == d2
Example #18
0
def test_DifferentialOperatorEqPoly():
    x = symbols('x', integer=True)
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    do = DifferentialOperator([x**2, R.base.zero, R.base.zero], R)
    do2 = DifferentialOperator([x**2, 1, x], R)
    assert not do == do2

    # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799
    # should work once that is solved
    # p = do.listofpoly[0]
    # assert do == p

    p2 = do2.listofpoly[0]
    assert not do2 == p2
Example #19
0
def test_DifferentialOperator():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    assert Dx == R.derivative_operator
    assert Dx == DifferentialOperator([R.base.zero, R.base.one], R)
    assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R)
    assert (x**2 + 1) + Dx + x * \
        Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R)
    assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \
        (-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3
    p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2)
    q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \
        (20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \
        (x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6
    assert p == q
Example #20
0
def test_from_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = hyper([1, 1], [Rational(3, 2)], x**2 / 4)
    q = HolonomicFunction(
        (4 * x) + (5 * x**2 - 8) * Dx + (x**3 - 4 * x) * Dx**2, x, 1,
        [2 * sqrt(3) * pi / 9, -4 * sqrt(3) * pi / 27 + Rational(4, 3)])
    r = from_hyper(p)
    assert r == q
    p = from_hyper(hyper([1], [Rational(3, 2)], x**2 / 4))
    q = HolonomicFunction(-x + (-x**2 / 2 + 2) * Dx + x * Dx**2, x)
    # x0 = 1
    y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
    assert sstr(p.y0) == y0
    assert q.annihilator == p.annihilator
Example #21
0
def test_QuotientRingElement():
    R = QQ.old_poly_ring(x) / [x**10]
    X = R.convert(x)

    assert X * (X + 1) == R.convert(x**2 + x)
    assert X * x == R.convert(x**2)
    assert x * X == R.convert(x**2)
    assert X + x == R.convert(2 * x)
    assert x + X == 2 * X
    assert X**2 == R.convert(x**2)
    assert 1 / (1 - X) == R.convert(sum(x**i for i in range(10)))
    assert X**10 == R.zero
    assert X != x

    raises(NotReversible, lambda: 1 / X)
Example #22
0
def test_from_meijerg():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = from_meijerg(
        meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x))
    q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \
        [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))])
    assert p == q
    p = from_meijerg(meijerg(([], []), ([0], []), x))
    q = HolonomicFunction(1 + Dx, x, 0, [1])
    assert p == q
    p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x))
    q = HolonomicFunction((x + S.Half) * Dx + x * Dx**2, x, 1,
                          [sqrt(pi) * erf(1), exp(-1)])
    assert p == q
    p = from_meijerg(meijerg(([0], [1]), ([0], []), 2 * x**2))
    q = HolonomicFunction((3 * x**2 - 1) * Dx + x**3 * Dx**2, x, 1,
                          [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))])
    assert p == q
Example #23
0
def test_multiplication_initial_condition():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx**2 + x * Dx - 1, x, 0, [3, 1])
    q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
    r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \
        (2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3])
    assert p * q == r
    p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
    q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3])
    r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \
        160*x**3/27 + 404*x**2/9 + 8*x + Rational(40, 3)) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \
        8*x**3/9 + 28*x**2 + x*Rational(40, 9) - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \
        220*x**2/9 - x*Rational(80, 3))*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + Rational(200, 9))*Dx**3 + \
        (3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - x*Rational(20, 9) - Rational(20, 3))*Dx**4 + (-4*x**3 + 64*x**2/9 + \
            x*Rational(8, 3))*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + Rational(20, 9))*Dx**6, x, 0, [3, 3, 3, -3, -12, -24])
    assert p * q == r
    p = HolonomicFunction(Dx - 1, x, 0, [2])
    q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
    r = HolonomicFunction(2 - 2 * Dx + Dx**2, x, 0, [0, 2])
    assert p * q == r
    q = HolonomicFunction(x * Dx**2 + 1 + 2 * Dx, x, 0, [0, 1])
    r = HolonomicFunction((x - 1) + (-2 * x + 2) * Dx + x * Dx**2, x, 0,
                          [0, 2])
    assert p * q == r
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3])
    q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1])
    r = HolonomicFunction(6 * Dx + 3 * Dx**2 + 2 * Dx**3 - 3 * Dx**4 + Dx**6,
                          x, 0, [1, 5, 14, 17, 17, 2])
    assert p * q == r
    p = expr_to_holonomic(sin(x))
    q = expr_to_holonomic(1 / x, x0=1)
    r = HolonomicFunction(x + 2 * Dx + x * Dx**2, x, 1,
                          [sin(1), -sin(1) + cos(1)])
    assert p * q == r
    p = expr_to_holonomic(sqrt(x))
    q = expr_to_holonomic(sqrt(x**2 - x))
    r = (p * q).to_expr()
    assert r == I * x * sqrt(-x + 1)
Example #24
0
def is_rat(c):
    r"""
    Test whether an argument is of an acceptable type to be used as a rational
    number.

    Explanation
    ===========

    Returns ``True`` on any argument of type ``int``, :ref:`ZZ`, or :ref:`QQ`.

    See Also
    ========

    is_int

    """
    # ``c in QQ`` is too accepting (e.g. ``3.14 in QQ`` is ``True``),
    # ``QQ.of_type(c)`` is too demanding (e.g. ``QQ.of_type(3)`` is ``False``).
    #
    # Meanwhile, if gmpy2 is installed then ``ZZ.of_type()`` accepts only
    # ``mpz``, not ``int``, so we need another clause to ensure ``int`` is
    # accepted.
    return isinstance(c, int) or ZZ.of_type(c) or QQ.of_type(c)
Example #25
0
def test_evalf_rk4():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')

    # log(1+x)
    p = HolonomicFunction((1 + x) * Dx**2 + Dx, x, 0, [0, 1])

    # path taken is a straight line from 0 to 1, on the real axis
    r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
    s = '0.693146363174626'  # approx. equal to log(2) i.e. 0.693147180559945
    assert sstr(p.evalf(r)[-1]) == s

    # path taken is a traingle 0-->1+i-->2
    r = [0.1 + 0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 + 0.1 * I)
    for i in range(10):
        r.append(r[-1] + 0.1 - 0.1 * I)

    # close to the exact solution 1.09861228866811
    # imaginary part also close to zero
    s = '1.098616 + 1.36083e-7*I'
    assert sstr(p.evalf(r)[-1].n(7)) == s

    # sin(x)
    p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
    s = '0.90929463522785 + 1.52655665885959e-16*I'
    assert sstr(p.evalf(r)[-1]) == s

    # computing sin(pi/2) using this method
    # using a linear path from 0 to pi/2
    r = [0.1]
    for i in range(14):
        r.append(r[-1] + 0.1)
    r.append(pi / 2)
    s = '0.999999895088917'  # close to 1.0 (exact solution)
    assert sstr(p.evalf(r)[-1]) == s

    # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
    # computing the same value sin(pi/2) using different path
    r = [0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 * I)
    for i in range(15):
        r.append(r[-1] + 0.1)
    r.append(pi / 2 + I)
    for i in range(10):
        r.append(r[-1] - 0.1 * I)

    # close to 1.0
    s = '1.00000003415141 + 6.11940487991086e-16*I'
    assert sstr(p.evalf(r)[-1]) == s

    # cos(x)
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
    # compute cos(pi) along 0-->pi
    r = [0.05]
    for i in range(61):
        r.append(r[-1] + 0.05)
    r.append(pi)
    # close to -1 (exact answer)
    s = '-0.999999993238714'
    assert sstr(p.evalf(r)[-1]) == s

    # a rectangular path (0 -> i -> 2+i -> 2)
    r = [0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 * I)
    for i in range(20):
        r.append(r[-1] + 0.1)
    for i in range(10):
        r.append(r[-1] - 0.1 * I)

    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]).evalf(r)
    s = '0.493152791638442 - 1.41553435639707e-15*I'
    assert sstr(p[-1]) == s
Example #26
0
def test_rref_solve():
    x, y, z = Dummy('x'), Dummy('y'), Dummy('z')

    assert rref_solve(
        [[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)],
         [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]],
        [[QQ(2)], [QQ(3)], [QQ(1)]], QQ) == [[QQ(-1, 225)], [QQ(23, 135)],
                                             [QQ(4, 45)]]
Example #27
0
def test_LU_solve():
    x, y, z = Dummy('x'), Dummy('y'), Dummy('z')

    assert LU_solve(
        [[QQ(2), QQ(-1), QQ(-2)], [QQ(-4), QQ(6), QQ(3)],
         [QQ(-4), QQ(-2), QQ(8)]], [[x], [y], [z]],
        [[QQ(-1)], [QQ(13)], [QQ(-6)]], QQ) == [[QQ(2, 1)], [QQ(3, 1)],
                                                [QQ(1, 1)]]
Example #28
0
def test_expr_to_holonomic():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = expr_to_holonomic((sin(x) / x)**2)
    q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \
        [1, 0, Rational(-2, 3)])
    assert p == q
    p = expr_to_holonomic(1 / (1 + x**2)**2)
    q = HolonomicFunction(4 * x + (x**2 + 1) * Dx, x, 0, [1])
    assert p == q
    p = expr_to_holonomic(exp(x) * sin(x) + x * log(1 + x))
    q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \
        - 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \
        (-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \
        7*x**2/2 + x + Rational(5, 2))*Dx**4, x, 0, [0, 1, 4, -1])
    assert p == q
    p = expr_to_holonomic(x * exp(x) + cos(x) + 1)
    q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \
        0, [2, 1, 1, 3])
    assert p == q
    assert (x * exp(x) + cos(x) + 1).series(n=10) == p.series(n=10)
    p = expr_to_holonomic(log(1 + x)**2 + 1)
    q = HolonomicFunction(
        Dx + (3 * x + 3) * Dx**2 + (x**2 + 2 * x + 1) * Dx**3, x, 0, [1, 0, 2])
    assert p == q
    p = expr_to_holonomic(erf(x)**2 + x)
    q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \
        (x**2+ Rational(1, 4))*Dx**4, x, 0, [0, 1, 8/pi, 0])
    assert p == q
    p = expr_to_holonomic(cosh(x) * x)
    q = HolonomicFunction((-x**2 + 2) - 2 * x * Dx + x**2 * Dx**2, x, 0,
                          [0, 1])
    assert p == q
    p = expr_to_holonomic(besselj(2, x))
    q = HolonomicFunction((x**2 - 4) + x * Dx + x**2 * Dx**2, x, 0, [0, 0])
    assert p == q
    p = expr_to_holonomic(besselj(0, x) + exp(x))
    q = HolonomicFunction((-x**2 - x/2 + S.Half) + (x**2 - x/2 - Rational(3, 2))*Dx + (-x**2 + x/2 + 1)*Dx**2 +\
        (x**2 + x/2)*Dx**3, x, 0, [2, 1, S.Half])
    assert p == q
    p = expr_to_holonomic(sin(x)**2 / x)
    q = HolonomicFunction(4 + 4 * x * Dx + 3 * Dx**2 + x * Dx**3, x, 0,
                          [0, 1, 0])
    assert p == q
    p = expr_to_holonomic(sin(x)**2 / x, x0=2)
    q = HolonomicFunction((4) + (4 * x) * Dx + (3) * Dx**2 + (x) * Dx**3, x, 2,
                          [
                              sin(2)**2 / 2,
                              sin(2) * cos(2) - sin(2)**2 / 4,
                              -3 * sin(2)**2 / 4 + cos(2)**2 - sin(2) * cos(2)
                          ])
    assert p == q
    p = expr_to_holonomic(log(x) / 2 - Ci(2 * x) / 2 + Ci(2) / 2)
    q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \
        [-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0])
    assert p == q
    p = p.to_expr()
    q = log(x) / 2 - Ci(2 * x) / 2 + Ci(2) / 2
    assert p == q
    p = expr_to_holonomic(x**S.Half, x0=1)
    q = HolonomicFunction(x * Dx - S.Half, x, 1, [1])
    assert p == q
    p = expr_to_holonomic(sqrt(1 + x**2))
    q = HolonomicFunction((-x) + (x**2 + 1) * Dx, x, 0, [1])
    assert p == q
    assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\
        (sqrt(x) + sqrt(2*x))).simplify() == 0
    assert expr_to_holonomic(3 * x +
                             2 * sqrt(x)).to_expr() == 3 * x + 2 * sqrt(x)
    p = expr_to_holonomic((x**4 + x**3 + 5 * x**2 + 3 * x + 2) / x**2,
                          lenics=3)
    q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \
        2*x)*Dx, x, 0, {-2: [2, 3, 5]})
    assert p == q
    p = expr_to_holonomic(1 / (x - 1)**2, lenics=3, x0=1)
    q = HolonomicFunction((2) + (x - 1) * Dx, x, 1, {-2: [1, 0, 0]})
    assert p == q
    a = symbols("a")
    p = expr_to_holonomic(sqrt(a * x), x=x)
    assert p.to_expr() == sqrt(a) * sqrt(x)
Example #29
0
class GaussianRationalField(GaussianDomain, Field):
    r"""Field of Gaussian rationals ``QQ_I``

    The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`QQ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I/2)
    >>> p
    Poly(x**2 + I/2, x, domain='QQ_I')
    >>> p.domain
    QQ_I

    The polys option ``gaussian=True`` can be used to specify that the domain
    should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
    all integers.

    >>> Poly(x**2)
    Poly(x**2, x, domain='ZZ')
    >>> Poly(x**2 + I)
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> Poly(x**2/2)
    Poly(1/2*x**2, x, domain='QQ')
    >>> Poly(x**2, gaussian=True)
    Poly(x**2, x, domain='QQ_I')
    >>> Poly(x**2 + I, gaussian=True)
    Poly(x**2 + I, x, domain='QQ_I')
    >>> Poly(x**2/2, gaussian=True)
    Poly(1/2*x**2, x, domain='QQ_I')

    The :ref:`QQ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian rationals.

    >>> from sympy import factor, QQ_I
    >>> factor(x**2/4 + 1)
    (x**2 + 4)/4
    >>> factor(x**2/4 + 1, domain='QQ_I')
    (x - 2*I)*(x + 2*I)/4
    >>> factor(x**2/4 + 1, domain=QQ_I)
    (x - 2*I)*(x + 2*I)/4

    It is also possible to specify the :ref:`QQ_I` domain explicitly with
    polys functions like :py:func:`~.apart`.

    >>> from sympy import apart
    >>> apart(1/(1 + x**2))
    1/(x**2 + 1)
    >>> apart(1/(1 + x**2), domain=QQ_I)
    I/(2*(x + I)) - I/(2*(x - I))

    The corresponding `ring of integers`_ is the domain of the Gaussian
    integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
    of :ref:`ZZ_I`.

    >>> from sympy import ZZ_I, QQ_I, QQ
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`QQ_I` can be used as a constructor.

    >>> QQ_I(3, 4)
    (3 + 4*I)
    >>> QQ_I(5)
    (5 + 0*I)
    >>> QQ_I(QQ(2, 3), QQ(4, 5))
    (2/3 + 4/5*I)

    The domain elements of :ref:`QQ_I` are instances of
    :py:class:`~.GaussianRational` which support the field operations
    ``+,-,*,**,/``.

    >>> z1 = QQ_I(5, 1)
    >>> z2 = QQ_I(2, QQ(1, 2))
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 1/2*I)
    >>> z1 + z2
    (7 + 3/2*I)
    >>> z1 * z2
    (19/2 + 9/2*I)
    >>> z2 ** 2
    (15/4 + 2*I)

    True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
    is always exact.

    >>> z1 / z2
    (42/17 + -2/17*I)
    >>> QQ_I.exquo(z1, z2)
    (42/17 + -2/17*I)
    >>> z1 == (z1/z2)*z2
    True

    Both floor (``//``) and modulo (``%``) division can be used with
    :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
    but division is always exact so there is no remainder.

    >>> z1 // z2
    (42/17 + -2/17*I)
    >>> z1 % z2
    (0 + 0*I)
    >>> QQ_I.div(z1, z2)
    ((42/17 + -2/17*I), (0 + 0*I))
    >>> (z1//z2)*z2 + z1%z2 == z1
    True

    .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
    """
    dom = QQ
    dtype = GaussianRational
    zero = dtype(QQ(0), QQ(0))
    one = dtype(QQ(1), QQ(0))
    imag_unit = dtype(QQ(0), QQ(1))
    units = (one, imag_unit, -one, -imag_unit)  # powers of i

    rep = 'QQ_I'

    is_GaussianField = True
    is_QQ_I = True

    def __init__(self):  # override Domain.__init__
        """For constructing QQ_I."""

    def get_ring(self):
        """Returns a ring associated with ``self``. """
        return ZZ_I

    def get_field(self):
        """Returns a field associated with ``self``. """
        return self

    def as_AlgebraicField(self):
        """Get equivalent domain as an ``AlgebraicField``. """
        return AlgebraicField(self.dom, I)

    def numer(self, a):
        """Get the numerator of ``a``."""
        ZZ_I = self.get_ring()
        return ZZ_I.convert(a * self.denom(a))

    def denom(self, a):
        """Get the denominator of ``a``."""
        ZZ = self.dom.get_ring()
        QQ = self.dom
        ZZ_I = self.get_ring()
        denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
        return ZZ_I(denom_ZZ, ZZ.zero)

    def from_GaussianIntegerRing(K1, a, K0):
        """Convert a ZZ_I element to QQ_I."""
        return K1.new(a.x, a.y)

    def from_GaussianRationalField(K1, a, K0):
        """Convert a QQ_I element to QQ_I."""
        return a
Example #30
0
def test_evalf_euler():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')

    # log(1+x)
    p = HolonomicFunction((1 + x) * Dx**2 + Dx, x, 0, [0, 1])

    # path taken is a straight line from 0 to 1, on the real axis
    r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
    s = '0.699525841805253'  # approx. equal to log(2) i.e. 0.693147180559945
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # path taken is a traingle 0-->1+i-->2
    r = [0.1 + 0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 + 0.1 * I)
    for i in range(10):
        r.append(r[-1] + 0.1 - 0.1 * I)

    # close to the exact solution 1.09861228866811
    # imaginary part also close to zero
    s = '1.07530466271334 - 0.0251200594793912*I'
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # sin(x)
    p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
    s = '0.905546532085401 - 6.93889390390723e-18*I'
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # computing sin(pi/2) using this method
    # using a linear path from 0 to pi/2
    r = [0.1]
    for i in range(14):
        r.append(r[-1] + 0.1)
    r.append(pi / 2)
    s = '1.08016557252834'  # close to 1.0 (exact solution)
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
    # computing the same value sin(pi/2) using different path
    r = [0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 * I)
    for i in range(15):
        r.append(r[-1] + 0.1)
    r.append(pi / 2 + I)
    for i in range(10):
        r.append(r[-1] - 0.1 * I)

    # close to 1.0
    s = '0.976882381836257 - 1.65557671738537e-16*I'
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # cos(x)
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
    # compute cos(pi) along 0-->pi
    r = [0.05]
    for i in range(61):
        r.append(r[-1] + 0.05)
    r.append(pi)
    # close to -1 (exact answer)
    s = '-1.08140824719196'
    assert sstr(p.evalf(r, method='Euler')[-1]) == s

    # a rectangular path (0 -> i -> 2+i -> 2)
    r = [0.1 * I]
    for i in range(9):
        r.append(r[-1] + 0.1 * I)
    for i in range(20):
        r.append(r[-1] + 0.1)
    for i in range(10):
        r.append(r[-1] - 0.1 * I)

    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]).evalf(r, method='Euler')
    s = '0.501421652861245 - 3.88578058618805e-16*I'
    assert sstr(p[-1]) == s