Example #1
0
def test_Domain_convert():

    def check_element(e1, e2, K1, K2, K3):
        assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)
        assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)

    def check_domains(K1, K2):
        K3 = K1.unify(K2)
        check_element(K3.convert_from(K1.one,  K1), K3.one , K1, K2, K3)
        check_element(K3.convert_from(K2.one,  K2), K3.one , K1, K2, K3)
        check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3)
        check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3)

    def composite_domains(K):
        return [K, K[y], K[z], K[y, z],
                   K.frac_field(y), K.frac_field(z), K.frac_field(y, z)]

    QQ2 = QQ.algebraic_field(sqrt(2))
    QQ3 = QQ.algebraic_field(sqrt(3))
    doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC]

    for i, K1 in enumerate(doms):
        for K2 in doms[i:]:
            for K3 in composite_domains(K1):
                for K4 in composite_domains(K2):
                    check_domains(K3, K4)

    assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R.to_domain()) == 0

    assert CC.convert(ZZ_I(1, 2)) == CC(1, 2)
    assert CC.convert(QQ_I(1, 2)) == CC(1, 2)
Example #2
0
def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(
        1684996666696915,
        1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R.to_domain()) == 0
Example #3
0
def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(
        1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576
    )

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R.to_domain()) == 0
Example #4
0
def test_Domain_convert():
    def check_element(e1, e2, K1, K2, K3):
        assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2,
                                                              K3)
        assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)

    def check_domains(K1, K2):
        K3 = K1.unify(K2)
        check_element(K3.convert_from(K1.one, K1), K3.one, K1, K2, K3)
        check_element(K3.convert_from(K2.one, K2), K3.one, K1, K2, K3)
        check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3)
        check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3)

    def composite_domains(K):
        domains = [
            K,
            K[y],
            K[z],
            K[y, z],
            K.frac_field(y),
            K.frac_field(z),
            K.frac_field(y, z),
            # XXX: These should be tested and made to work...
            # K.old_poly_ring(y), K.old_frac_field(y),
        ]
        return domains

    QQ2 = QQ.algebraic_field(sqrt(2))
    QQ3 = QQ.algebraic_field(sqrt(3))
    doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC]

    for i, K1 in enumerate(doms):
        for K2 in doms[i:]:
            for K3 in composite_domains(K1):
                for K4 in composite_domains(K2):
                    check_domains(K3, K4)

    assert QQ.convert(10e-52) == QQ(
        1684996666696915,
        1684996666696914987166688442938726917102321526408785780068975640576)

    R, xr = ring("x", ZZ)
    assert ZZ.convert(xr - xr) == 0
    assert ZZ.convert(xr - xr, R.to_domain()) == 0

    assert CC.convert(ZZ_I(1, 2)) == CC(1, 2)
    assert CC.convert(QQ_I(1, 2)) == CC(1, 2)

    K1 = QQ.frac_field(x)
    K2 = ZZ.frac_field(x)
    K3 = QQ[x]
    K4 = ZZ[x]
    Ks = [K1, K2, K3, K4]
    for Ka, Kb in product(Ks, Ks):
        assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x)

    assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2))
Example #5
0
def ModularIntegerFactory(_mod, _dom=None, _sym=True):
    """Create custom class for specific integer modulus."""
    if _dom is None:
        from sympy.polys.domains import ZZ as _dom
    elif not _dom.is_ZZ:
        raise TypeError("expected an integer ring, got %s" % _dom)

    try:
        _mod = _dom.convert(_mod)
    except CoercionFailed:
        ok = False
    else:
        ok = True

    if not ok or _mod < 1:
        raise ValueError("modulus must be a positive integer, got %s" % _mod)

    key = _mod, _dom, _sym

    try:
        cls = _modular_integer_cache[key]
    except KeyError:
        class cls(ModularInteger):
            mod, dom, sym = _mod, _dom, _sym

        if _sym:
            cls.__name__ = "SymmetricModularIntegerMod%s" % _mod
        else:
            cls.__name__ = "ModularIntegerMod%s" % _mod

        _modular_integer_cache[key] = cls

    return cls
Example #6
0
 def from_GaussianRationalField(K1, a, K0):
     """Convert a QQ_I element to ZZ_I."""
     return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
Example #7
0
def test_Domain_convert():
    assert QQ.convert(10e-52) != QQ(0)
    assert ZZ.convert(DMP([[ZZ(1)]], ZZ)) == ZZ(1)
Example #8
0
def test_Domain_convert():
    assert QQ.convert(10e-52) != QQ(0)
    assert ZZ.convert(DMP([[ZZ(1)]], ZZ)) == ZZ(1)