Example #1
0
def test_Submodule_mul():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(DomainMatrix([
        [0, 10, 0, 0],
        [0, 0, 7, 0],
    ], (2, 4), ZZ).transpose(),
                                denom=15)
    C1 = A.submodule_from_matrix(DomainMatrix([
        [0, 20, 0, 0],
        [0, 0, 14, 0],
    ], (2, 4), ZZ).transpose(),
                                 denom=3)
    C2 = A.submodule_from_matrix(DomainMatrix([
        [0, 0, 10, 0],
        [0, 0, 0, 7],
    ], (2, 4), ZZ).transpose(),
                                 denom=15)
    C3_unred = A.submodule_from_matrix(DomainMatrix(
        [[0, 0, 100, 0], [0, 0, 0, 70], [0, 0, 0, 70], [-49, -49, -49, -49]],
        (4, 4), ZZ).transpose(),
                                       denom=225)
    C3 = A.submodule_from_matrix(DomainMatrix(
        [[4900, 4900, 0, 0], [4410, 4410, 10, 0], [2107, 2107, 7, 7]], (3, 4),
        ZZ).transpose(),
                                 denom=225)
    assert C * 1 == C
    assert C**1 == C
    assert C * 10 == C1
    assert C * A(1) == C2
    assert C.mul(C, hnf=False) == C3_unred
    assert C * C == C3
    assert C**2 == C3
Example #2
0
def test_Submodule_represent():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    a0 = A(to_col([6, 12, 18, 24]))
    a1 = A(to_col([2, 4, 6, 8]))
    a2 = A(to_col([1, 3, 5, 7]))

    b1 = B.represent(a1)
    assert b1.flat() == [1, 2, 3, 4]

    c0 = C.represent(a0)
    assert c0.flat() == [1, 2, 3, 4]

    Y = A.submodule_from_matrix(
        DomainMatrix([
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
        ], (3, 4), ZZ).transpose())

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    z0 = Z(to_col([1, 2, 3, 4, 5, 6]))

    raises(ClosureFailure, lambda: Y.represent(A(3)))
    raises(ClosureFailure, lambda: B.represent(a2))
    raises(ClosureFailure, lambda: B.represent(z0))
Example #3
0
def test_Submodule_reduced():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
    D = C.reduced()
    assert D.denom == 1 and D == C == B
Example #4
0
def test_Submodule_add():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(DomainMatrix([
        [4, 0, 0, 0],
        [0, 4, 0, 0],
    ], (2, 4), ZZ).transpose(),
                                denom=6)
    C = A.submodule_from_matrix(DomainMatrix([
        [0, 10, 0, 0],
        [0, 0, 7, 0],
    ], (2, 4), ZZ).transpose(),
                                denom=15)
    D = A.submodule_from_matrix(DomainMatrix([
        [20, 0, 0, 0],
        [0, 20, 0, 0],
        [0, 0, 14, 0],
    ], (3, 4), ZZ).transpose(),
                                denom=30)
    assert B + C == D

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    Y = Z.submodule_from_gens([Z(0), Z(1)])
    raises(TypeError, lambda: B + Y)
Example #5
0
def test_Module_submodule_from_matrix():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    e = B(to_col([1, 2, 3, 4]))
    f = e.to_parent()
    assert f.col.flat() == [2, 4, 6, 8]
    # Matrix must be over ZZ:
    raises(ValueError,
           lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ)))
    # Number of rows of matrix must equal number of generators of module A:
    raises(ValueError,
           lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ)))
Example #6
0
def test_check_formal_conditions_for_maximal_order():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
    # Is a direct submodule of a power basis, but lacks 1 as first generator:
    raises(StructureError,
           lambda: _check_formal_conditions_for_maximal_order(B))
    # Is not a direct submodule of a power basis:
    raises(StructureError,
           lambda: _check_formal_conditions_for_maximal_order(C))
    # Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
    raises(StructureError,
           lambda: _check_formal_conditions_for_maximal_order(D))
Example #7
0
def test_Submodule_repr():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
    assert repr(
        B
    ) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3'
Example #8
0
def test_Module_one():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    assert A.one().col.flat() == [1, 0, 0, 0]
    assert A.one().module == A
    assert B.one().col.flat() == [1, 0, 0, 0]
    assert B.one().module == A
Example #9
0
def test_make_mod_elt():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    col = to_col([1, 2, 3, 4])
    eA = make_mod_elt(A, col)
    eB = make_mod_elt(B, col)
    assert isinstance(eA, PowerBasisElement)
    assert not isinstance(eB, PowerBasisElement)
Example #10
0
def test_Submodule_is_compat_submodule():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert B.is_compat_submodule(C) is True
    assert B.is_compat_submodule(A) is False
    assert B.is_compat_submodule(D) is False
Example #11
0
def test_ModuleElement_div():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    f = A(to_col([0, 0, 0, 7]), denom=5)
    g = C(to_col([1, 1, 1, 1]))
    assert e // f == 10 * A(3) // 21
    assert e // g == -2 * A(2) // 9
    assert 3 // g == -A(1)
Example #12
0
def test_Submodule_discard_before():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    B.compute_mult_tab()
    C = B.discard_before(2)
    assert C.parent == B.parent
    assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF()
    assert C.matrix == B.matrix[:, 2:]
    assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}}
Example #13
0
def test_Module_element_from_rational():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    rA = A.element_from_rational(QQ(22, 7))
    rB = B.element_from_rational(QQ(22, 7))
    assert rA.coeffs == [22, 0, 0, 0]
    assert rA.denom == 7
    assert rA.module == A
    assert rB.coeffs == [22, 0, 0, 0]
    assert rB.denom == 7
    assert rB.module == A
Example #14
0
def test_Module_ancestors():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert C.ancestors(include_self=True) == [A, B, C]
    assert D.ancestors(include_self=True) == [A, B, D]
    assert C.power_basis_ancestor() == A
    assert C.nearest_common_ancestor(D) == B
    M = Module()
    assert M.power_basis_ancestor() is None
Example #15
0
def test_ModuleElement_pow():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    g = C(to_col([0, 0, 0, 1]), denom=2)
    assert e**3 == A(to_col([0, 0, 0, 8]), denom=27)
    assert g**2 == C(to_col([0, 3, 0, 0]), denom=4)
    assert e**0 == A(to_col([1, 0, 0, 0]))
    assert g**0 == A(to_col([1, 0, 0, 0]))
    assert e**1 == e
    assert g**1 == g
Example #16
0
def test_find_min_poly():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    powers = []
    m = find_min_poly(A(1), QQ, x=x, powers=powers)
    assert m == Poly(T, domain=QQ)
    assert len(powers) == 5

    # powers list need not be passed
    m = find_min_poly(A(1), QQ, x=x)
    assert m == Poly(T, domain=QQ)

    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))
Example #17
0
def test_Module_basis_elements():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    basis = B.basis_elements()
    bp = B.basis_element_pullbacks()
    for i, (e, p) in enumerate(zip(basis, bp)):
        c = [0] * 4
        assert e.module == B
        assert p.module == A
        c[i] = 1
        assert e == B(to_col(c))
        c[i] = 2
        assert p == A(to_col(c))
Example #18
0
def test_EndomorphismRing_represent():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    R = A.endomorphism_ring()
    phi = R.inner_endomorphism(A(1))
    col = R.represent(phi)
    assert col.transpose() == DomainMatrix(
        [[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]], (1, 16), ZZ)

    B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ))
    S = B.endomorphism_ring()
    psi = S.inner_endomorphism(A(1))
    col = S.represent(psi)
    assert col == DomainMatrix([], (0, 0), ZZ)

    raises(NotImplementedError, lambda: R.represent(3.14))
Example #19
0
def test_ModuleElement_to_ancestors():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    eD = D(0)
    eC = eD.to_parent()
    eB = eD.to_ancestor(B)
    eA = eD.over_power_basis()
    assert eC.module is C and eC.coeffs == [5, 0, 0, 0]
    assert eB.module is B and eB.coeffs == [15, 0, 0, 0]
    assert eA.module is A and eA.coeffs == [30, 0, 0, 0]

    a = A(0)
    raises(ValueError, lambda: a.to_parent())
Example #20
0
def test_ModuleElement_add():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([1, 2, 3, 4]), denom=6)
    f = A(to_col([5, 6, 7, 8]), denom=10)
    g = C(to_col([1, 1, 1, 1]), denom=2)
    assert e + f == A(to_col([10, 14, 18, 22]), denom=15)
    assert e - f == A(to_col([-5, -4, -3, -2]), denom=15)
    assert e + g == A(to_col([10, 11, 12, 13]), denom=6)
    assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30)
    assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(TypeError, lambda: e + Z(0))
    raises(TypeError, lambda: e + 3.14)
Example #21
0
def test_ModuleElement_compatibility():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert C(0).is_compat(C(1)) is True
    assert C(0).is_compat(D(0)) is False
    u, v = C(0).unify(D(0))
    assert u.module is B and v.module is B
    assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0)

    u, v = C(0).unify(C(1))
    assert u == C(0) and v == C(1)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(UnificationFailed, lambda: C(0).unify(Z(1)))
Example #22
0
def test_ModuleElement_equiv():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 2, 3, 4]), denom=1)
    f = A(to_col([3, 6, 9, 12]), denom=3)
    assert e.equiv(f)

    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    g = C(to_col([1, 2, 3, 4]), denom=1)
    h = A(to_col([3, 6, 9, 12]), denom=1)
    assert g.equiv(h)
    assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7))

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(UnificationFailed, lambda: e.equiv(Z(0)))

    assert e.equiv(3.14) is False
Example #23
0
def test_ModuleElement_mul():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    f = A(to_col([0, 0, 0, 7]), denom=5)
    g = C(to_col([0, 0, 0, 1]), denom=2)
    h = A(to_col([0, 0, 3, 1]), denom=7)
    assert e * f == A(to_col([-14, -14, -14, -14]), denom=15)
    assert e * g == A(to_col([-1, -1, -1, -1]))
    assert e * h == A(to_col([-2, -2, -2, 4]), denom=21)
    assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5)
    assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7))
    assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(TypeError, lambda: e * Z(0))
    raises(TypeError, lambda: e * 3.14)
    raises(TypeError, lambda: e // 3.14)
    raises(ZeroDivisionError, lambda: e // 0)
Example #24
0
def test_Submodule_eq():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
    assert C == B
Example #25
0
def test_Module_starts_with_unity():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    assert A.starts_with_unity() is True
    assert B.starts_with_unity() is False