Example #1
0
def test_decomp_1():
    # All prime decompositions in cyclotomic fields are in the "easy case,"
    # since the index is unity.
    # Here we check the ramified prime.
    T = Poly(cyclotomic_poly(7))
    raises(ValueError, lambda: prime_decomp(7))
    P = prime_decomp(7, T)
    assert len(P) == 1
    P0 = P[0]
    assert P0.e == 6
    assert P0.f == 1
    # Test powers:
    assert P0**0 == P0.ZK
    assert P0**1 == P0
    assert P0**6 == 7 * P0.ZK
Example #2
0
 def primes_above(self, p):
     """Compute the prime ideals lying above a given rational prime *p*."""
     from sympy.polys.numberfields.primes import prime_decomp
     ZK = self.maximal_order()
     dK = self.discriminant()
     rad = self._nilradicals_mod_p.get(p)
     return prime_decomp(p, ZK=ZK, dK=dK, radical=rad)
Example #3
0
def test_repr():
    T = Poly(x**2 + 7)
    ZK, dK = round_two(T)
    P = prime_decomp(2, T, dK=dK, ZK=ZK)
    assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
    assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
    assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'
Example #4
0
def test_PrimeIdeal_eq():
    # `==` should fail on objects of different types, so even a completely
    # inert PrimeIdeal should test unequal to the rational prime it divides.
    T = Poly(cyclotomic_poly(7))
    P0 = prime_decomp(5, T)[0]
    assert P0.f == 6
    assert P0.as_submodule() == 5 * P0.ZK
    assert P0 != 5
Example #5
0
def test_valuation_at_prime_ideal():
    p = 7
    T = Poly(cyclotomic_poly(p))
    ZK, dK = round_two(T)
    P = prime_decomp(p, T, dK=dK, ZK=ZK)
    assert len(P) == 1
    P0 = P[0]
    v = P0.valuation(p * ZK)
    assert v == P0.e
    # Test easy 0 case:
    assert P0.valuation(5 * ZK) == 0
Example #6
0
def test_decomp_6():
    # Another case where 2 divides the index. This is Dedekind's example of
    # an essential discriminant divisor. (See Cohen, Excercise 6.10.)
    T = Poly(x**3 + x**2 - 2 * x + 8)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    p = 2
    P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
    assert len(P) == 3
    assert all(Pi.e == Pi.f == 1 for Pi in P)
    assert prod(Pi**Pi.e for Pi in P) == p * ZK
Example #7
0
def test_decomp_4():
    T = Poly(x**2 - 21)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    # 21 is 1 mod 4, so field disc is 3*7, and theory says the
    # rational primes 3, 7 should be the square of a prime ideal.
    for p in [3, 7]:
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        assert len(P) == 1
        assert P[0].e == 2
        assert P[0]**2 == p * ZK
Example #8
0
def test_decomp_3():
    T = Poly(x**2 - 35)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    # 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
    # rational primes 2, 5, 7 should be the square of a prime ideal.
    for p in [2, 5, 7]:
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        assert len(P) == 1
        assert P[0].e == 2
        assert P[0]**2 == p * ZK
Example #9
0
def test_pretty_printing():
    d = -7
    T = Poly(x**2 - d)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    p = 2
    P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
    assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
    assert P[0]._pretty(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
    assert P[0]._pretty(field_gen=theta,
                        just_gens=True) == '(2, (3*theta + 1)/2)'
Example #10
0
def test_decomp_2():
    # More easy cyclotomic cases, but here we check unramified primes.
    ell = 7
    T = Poly(cyclotomic_poly(ell))
    for p in [29, 13, 11, 5]:
        f_exp = n_order(p, ell)
        g_exp = (ell - 1) // f_exp
        P = prime_decomp(p, T)
        assert len(P) == g_exp
        for Pi in P:
            assert Pi.e == 1
            assert Pi.f == f_exp
Example #11
0
def test_decomp_8():
    # This time we consider various cubics, and try factoring all primes
    # dividing the index.
    cases = (
        x**3 + 3 * x**2 - 4 * x + 4,
        x**3 + 3 * x**2 + 3 * x - 3,
        x**3 + 5 * x**2 - x + 3,
        x**3 + 5 * x**2 - 5 * x - 5,
        x**3 + 3 * x**2 + 5,
        x**3 + 6 * x**2 + 3 * x - 1,
        x**3 + 6 * x**2 + 4,
        x**3 + 7 * x**2 + 7 * x - 7,
        x**3 + 7 * x**2 - x + 5,
        x**3 + 7 * x**2 - 5 * x + 5,
        x**3 + 4 * x**2 - 3 * x + 7,
        x**3 + 8 * x**2 + 5 * x - 1,
        x**3 + 8 * x**2 - 2 * x + 6,
        x**3 + 6 * x**2 - 3 * x + 8,
        x**3 + 9 * x**2 + 6 * x - 8,
        x**3 + 15 * x**2 - 9 * x + 13,
    )

    def display(T, p, radical, P, I, J):
        """Useful for inspection, when running test manually."""
        print('=' * 20)
        print(T, p, radical)
        for Pi in P:
            print(f'  ({Pi!r})')
        print("I: ", I)
        print("J: ", J)
        print(f'Equal: {I == J}')

    inspect = False
    for g in cases:
        T = Poly(g)
        rad = {}
        ZK, dK = round_two(T, radicals=rad)
        dT = T.discriminant()
        f_squared = dT // dK
        F = factorint(f_squared)
        for p in F:
            radical = rad.get(p)
            P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
            I = prod(Pi**Pi.e for Pi in P)
            J = p * ZK
            if inspect:
                display(T, p, radical, P, I, J)
            assert I == J
Example #12
0
def test_two_elt_rep():
    ell = 7
    T = Poly(cyclotomic_poly(ell))
    ZK, dK = round_two(T)
    for p in [29, 13, 11, 5]:
        P = prime_decomp(p, T)
        for Pi in P:
            # We have Pi in two-element representation, and, because we are
            # looking at a cyclotomic field, this was computed by the "easy"
            # method that just factors T mod p. We will now convert this to
            # a set of Z-generators, then convert that back into a two-element
            # rep. The latter need not be identical to the two-elt rep we
            # already have, but it must have the same HNF.
            H = p * ZK + Pi.alpha * ZK
            gens = H.basis_element_pullbacks()
            # Note: we could supply f = Pi.f, but prefer to test behavior without it.
            b = _two_elt_rep(gens, ZK, p)
            if b != Pi.alpha:
                H2 = p * ZK + b * ZK
                assert H2 == H
Example #13
0
def test_decomp_5():
    # Here is our first test of the "hard case" of prime decomposition.
    # We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
    # we consider the factorization of the rational prime 2, which divides
    # the index.
    # Theory says the form of p's factorization depends on the residue of
    # d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
    for d in [-7, -3]:
        T = Poly(x**2 - d)
        rad = {}
        ZK, dK = round_two(T, radicals=rad)
        p = 2
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        if d % 8 == 1:
            assert len(P) == 2
            assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
            assert prod(Pi**Pi.e for Pi in P) == p * ZK
        else:
            assert d % 8 == 5
            assert len(P) == 1
            assert P[0].e == 1
            assert P[0].f == 2
            assert P[0].as_submodule() == p * ZK
Example #14
0
def test_PrimeIdeal_add():
    T = Poly(cyclotomic_poly(7))
    P0 = prime_decomp(7, T)[0]
    # Adding ideals computes their GCD, so adding the ramified prime dividing
    # 7 to 7 itself should reproduce this prime (as a submodule).
    assert P0 + 7 * P0.ZK == P0.as_submodule()