def roots_linear(f): """Returns a list of roots of a linear polynomial.""" r = -f.nth(0)/f.nth(1) dom = f.get_domain() if not dom.is_Numerical: if dom.is_Composite: r = factor(r) else: r = simplify(r) return [r]
def _rational_case(cls, poly, func): """Handle the rational function case. """ roots = symbols('r:%d' % poly.degree()) var, expr = func.variables[0], func.expr f = sum(expr.subs(var, r) for r in roots) p, q = together(f).as_numer_denom() domain = QQ[roots] p = p.expand() q = q.expand() try: p = Poly(p, domain=domain, expand=False) except GeneratorsNeeded: p, p_coeff = None, (p,) else: p_monom, p_coeff = zip(*p.terms()) try: q = Poly(q, domain=domain, expand=False) except GeneratorsNeeded: q, q_coeff = None, (q,) else: q_monom, q_coeff = zip(*q.terms()) coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True) formulas, values = viete(poly, roots), [] for (sym, _), (_, val) in zip(mapping, formulas): values.append((sym, val)) for i, (coeff, _) in enumerate(coeffs): coeffs[i] = coeff.subs(values) n = len(p_coeff) p_coeff = coeffs[:n] q_coeff = coeffs[n:] if p is not None: p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr() else: (p,) = p_coeff if q is not None: q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr() else: (q,) = q_coeff return factor(p/q)
def _eval_sum_hyper(f, i, a): """ Returns (res, cond). Sums from a to oo. """ from sympy.functions import hyper from sympy.simplify import hyperexpand, hypersimp, fraction, simplify from sympy.polys.polytools import Poly, factor from sympy.core.numbers import Float if a != 0: return _eval_sum_hyper(f.subs(i, i + a), i, 0) if f.subs(i, 0) == 0: if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: return S(0), True return _eval_sum_hyper(f.subs(i, i + 1), i, 0) hs = hypersimp(f, i) if hs is None: return None if isinstance(hs, Float): from sympy.simplify.simplify import nsimplify hs = nsimplify(hs) numer, denom = fraction(factor(hs)) top, topl = numer.as_coeff_mul(i) bot, botl = denom.as_coeff_mul(i) ab = [top, bot] factors = [topl, botl] params = [[], []] for k in range(2): for fac in factors[k]: mul = 1 if fac.is_Pow: mul = fac.exp fac = fac.base if not mul.is_Integer: return None p = Poly(fac, i) if p.degree() != 1: return None m, n = p.all_coeffs() ab[k] *= m**mul params[k] += [n/m]*mul # Add "1" to numerator parameters, to account for implicit n! in # hypergeometric series. ap = params[0] + [1] bq = params[1] x = ab[0]/ab[1] h = hyper(ap, bq, x) return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
def roots_linear(f): """Returns a list of roots of a linear polynomial.""" add_comment('This equation is linear') r = -f.nth(0)/f.nth(1) dom = f.get_domain() if not dom.is_Numerical: if dom.is_Composite: r = factor(r) else: r = simplify(r) add_comment("The root of this equation is") add_eq(f.gen, r) return [r]
def roots_linear(f): """Returns a list of roots of a linear polynomial.""" add_eq(f.as_expr(), 0) tmp = str(Poly(f.as_expr()).factor_list()).split(',')[2][1:] r = -f.nth(0)/f.nth(1) dom = f.get_domain() if not dom.is_Numerical: if dom.is_Composite: r = factor(r) else: r = simplify(r) tmp = str(Poly(f.as_expr()).factor_list()).split(',')[2][1:] x = r add_eq(tmp, r) add_comment('') return [r]
def _solve_lambert(f, symbol, gens): """Return solution to ``f`` if it is a Lambert-type expression else raise NotImplementedError. The equality, ``f(x, a..f) = a*log(b*X + c) + d*X - f = 0`` has the solution, `X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))`. There are a variety of forms for `f(X, a..f)` as enumerated below: 1a1) if B**B = R for R not [0, 1] then log(B) + log(log(B)) = log(log(R)) X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R)) 1a2) if B*(b*log(B) + c)**a = R then log(B) + a*log(b*log(B) + c) = log(R) X = log(B); d=1, f=log(R) 1b) if a*log(b*B + c) + d*B = R then X = B, f = R 2a) if (b*B + c)*exp(d*B + g) = R then log(b*B + c) + d*B + g = log(R) a = 1, f = log(R) - g, X = B 2b) if -b*B + g*exp(d*B + h) = c then log(g) + d*B + h - log(b*B + c) = 0 a = -1, f = -h - log(g), X = B 3) if d*p**(a*B + g) - b*B = c then log(d) + (a*B + g)*log(p) - log(c + b*B) = 0 a = -1, d = a*log(p), f = -log(d) - g*log(p) """ nrhs, lhs = f.as_independent(symbol, as_Add=True) rhs = -nrhs lamcheck = [ tmp for tmp in gens if (tmp.func in [exp, log] or ( tmp.is_Pow and symbol in tmp.exp.free_symbols)) ] if not lamcheck: raise NotImplementedError() if lhs.is_Mul: lhs = expand_log(log(lhs)) rhs = log(rhs) lhs = factor(lhs, deep=True) # make sure we are inverted as completely as possible r = Dummy() i, lhs = _invert(lhs - r, symbol) rhs = i.xreplace({r: rhs}) # For the first ones: # 1a1) B**B = R != 0 (when 0, there is only a solution if the base is 0, # but if it is, the exp is 0 and 0**0=1 # comes back as B*log(B) = log(R) # 1a2) B*(a + b*log(B))**p = R or with monomial expanded or with whole # thing expanded comes back unchanged # log(B) + p*log(a + b*log(B)) = log(R) # lhs is Mul: # expand log of both sides to give: # log(B) + log(log(B)) = log(log(R)) # 1b) d*log(a*B + b) + c*B = R # lhs is Add: # isolate c*B and expand log of both sides: # log(c) + log(B) = log(R - d*log(a*B + b)) soln = [] if not soln: mainlog = _mostfunc(lhs, log, symbol) if mainlog: if lhs.is_Mul and rhs != 0: soln = _lambert(log(lhs) - log(rhs), symbol) elif lhs.is_Add: other = lhs.subs(mainlog, 0) if other and not other.is_Add and [ tmp for tmp in other.atoms(Pow) if symbol in tmp.free_symbols ]: if not rhs: diff = log(other) - log(other - lhs) else: diff = log(lhs - other) - log(rhs - other) soln = _lambert(expand_log(diff), symbol) else: #it's ready to go soln = _lambert(lhs - rhs, symbol) # For the next two, # collect on main exp # 2a) (b*B + c)*exp(d*B + g) = R # lhs is mul: # log to give # log(b*B + c) + d*B = log(R) - g # 2b) -b*B + g*exp(d*B + h) = R # lhs is add: # add b*B # log and rearrange # log(R + b*B) - d*B = log(g) + h if not soln: mainexp = _mostfunc(lhs, exp, symbol) if mainexp: lhs = collect(lhs, mainexp) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainexp-containing term to rhs other = lhs.subs(mainexp, 0) mainterm = lhs - other rhs = rhs - other if (mainterm.could_extract_minus_sign() and rhs.could_extract_minus_sign()): mainterm *= -1 rhs *= -1 diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) # 3) d*p**(a*B + b) + c*B = R # collect on main pow # log(R - c*B) - a*B*log(p) = log(d) + b*log(p) if not soln: mainpow = _mostfunc(lhs, Pow, symbol) if mainpow and symbol in mainpow.exp.free_symbols: lhs = collect(lhs, mainpow) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainpow-containing term to rhs other = lhs.subs(mainpow, 0) mainterm = lhs - other rhs = rhs - other diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) if not soln: raise NotImplementedError('%s does not appear to have a solution in ' 'terms of LambertW' % f) return list(ordered(soln))
def test_factor_nc(): x, y = symbols('x,y') k = symbols('k', integer=True) n, m, o = symbols('n,m,o', commutative=False) # mul and multinomial expansion is needed from sympy.core.function import _mexpand e = x * (1 + y)**2 assert _mexpand(e) == x + x * 2 * y + x * y**2 def factor_nc_test(e): ex = _mexpand(e) assert ex.is_Add f = factor_nc(ex) assert not f.is_Add and _mexpand(f) == ex factor_nc_test(x * (1 + y)) factor_nc_test(n * (x + 1)) factor_nc_test(n * (x + m)) factor_nc_test((x + m) * n) factor_nc_test(n * m * (x * o + n * o * m) * n) s = Sum(x, (x, 1, 2)) factor_nc_test(x * (1 + s)) factor_nc_test(x * (1 + s) * s) factor_nc_test(x * (1 + sin(s))) factor_nc_test((1 + n)**2) factor_nc_test((x + n) * (x + m) * (x + y)) factor_nc_test(x * (n * m + 1)) factor_nc_test(x * (n * m + x)) factor_nc_test(x * (x * n * m + 1)) factor_nc_test(x * n * (x * m + 1)) factor_nc_test(x * (m * n + x * n * m)) factor_nc_test(n * (1 - m) * n**2) factor_nc_test((n + m)**2) factor_nc_test((n - m) * (n + m)**2) factor_nc_test((n + m)**2 * (n - m)) factor_nc_test((m - n) * (n + m)**2 * (n - m)) assert factor_nc(n * (n + n * m)) == n**2 * (1 + m) assert factor_nc(m * (m * n + n * m * n**2)) == m * (m + n * m * n) * n eq = m * sin(n) - sin(n) * m assert factor_nc(eq) == eq # for coverage: from sympy.physics.secondquant import Commutator from sympy.polys.polytools import factor eq = 1 + x * Commutator(m, n) assert factor_nc(eq) == eq eq = x * Commutator(m, n) + x * Commutator(m, o) * Commutator(m, n) assert factor(eq) == x * (1 + Commutator(m, o)) * Commutator(m, n) # issue 6534 assert (2 * n + 2 * m).factor() == 2 * (n + m) # issue 6701 assert factor_nc(n**k + n**(k + 1)) == n**k * (1 + n) assert factor_nc((m * n)**k + (m * n)**(k + 1)) == (1 + m * n) * (m * n)**k # issue 6918 assert factor_nc(-n * (2 * x**2 + 2 * x)) == -2 * n * x * (x + 1)
def roots_quintic(f): """ Calculate exact roots of a solvable quintic """ result = [] coeff_5, coeff_4, p, q, r, s = f.all_coeffs() # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s if coeff_4: return result if coeff_5 != 1: l = [p / coeff_5, q / coeff_5, r / coeff_5, s / coeff_5] if not all(coeff.is_Rational for coeff in l): return result f = Poly(f / coeff_5) quintic = PolyQuintic(f) # Eqn standardized. Algo for solving starts here if not f.is_irreducible: return result f20 = quintic.f20 # Check if f20 has linear factors over domain Z if f20.is_irreducible: return result # Now, we know that f is solvable for _factor in f20.factor_list()[1]: if _factor[0].is_linear: theta = _factor[0].root(0) break d = discriminant(f) delta = sqrt(d) # zeta = a fifth root of unity zeta1, zeta2, zeta3, zeta4 = quintic.zeta T = quintic.T(theta, d) tol = S(1e-10) alpha = T[1] + T[2] * delta alpha_bar = T[1] - T[2] * delta beta = T[3] + T[4] * delta beta_bar = T[3] - T[4] * delta disc = alpha**2 - 4 * beta disc_bar = alpha_bar**2 - 4 * beta_bar l0 = quintic.l0(theta) l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) order = quintic.order(theta, d) test = (order * delta.n()) - ((l1.n() - l4.n()) * (l2.n() - l3.n())) # Comparing floats if not comp(test, 0, tol): l2, l3 = l3, l2 # Now we have correct order of l's R1 = l0 + l1 * zeta1 + l2 * zeta2 + l3 * zeta3 + l4 * zeta4 R2 = l0 + l3 * zeta1 + l1 * zeta2 + l4 * zeta3 + l2 * zeta4 R3 = l0 + l2 * zeta1 + l4 * zeta2 + l1 * zeta3 + l3 * zeta4 R4 = l0 + l4 * zeta1 + l3 * zeta2 + l2 * zeta3 + l1 * zeta4 Res = [None, [None] * 5, [None] * 5, [None] * 5, [None] * 5] Res_n = [None, [None] * 5, [None] * 5, [None] * 5, [None] * 5] sol = Symbol('sol') # Simplifying improves performance a lot for exact expressions R1 = _quintic_simplify(R1) R2 = _quintic_simplify(R2) R3 = _quintic_simplify(R3) R4 = _quintic_simplify(R4) # Solve imported here. Causing problems if imported as 'solve' # and hence the changed name from sympy.solvers.solvers import solve as _solve a, b = symbols('a b', cls=Dummy) _sol = _solve(sol**5 - a - I * b, sol) for i in range(5): _sol[i] = factor(_sol[i]) R1 = R1.as_real_imag() R2 = R2.as_real_imag() R3 = R3.as_real_imag() R4 = R4.as_real_imag() for i, root in enumerate(_sol): Res[1][i] = _quintic_simplify(root.subs({a: R1[0], b: R1[1]})) Res[2][i] = _quintic_simplify(root.subs({a: R2[0], b: R2[1]})) Res[3][i] = _quintic_simplify(root.subs({a: R3[0], b: R3[1]})) Res[4][i] = _quintic_simplify(root.subs({a: R4[0], b: R4[1]})) for i in range(1, 5): for j in range(5): Res_n[i][j] = Res[i][j].n() Res[i][j] = _quintic_simplify(Res[i][j]) r1 = Res[1][0] r1_n = Res_n[1][0] for i in range(5): if comp(im(r1_n * Res_n[4][i]), 0, tol): r4 = Res[4][i] break u, v = quintic.uv(theta, d) sqrt5 = math.sqrt(5) # Now we have various Res values. Each will be a list of five # values. We have to pick one r value from those five for each Res u, v = quintic.uv(theta, d) testplus = (u + v * delta * sqrt(5)).n() testminus = (u - v * delta * sqrt(5)).n() # Evaluated numbers suffixed with _n # We will use evaluated numbers for calculation. Much faster. r4_n = r4.n() r2 = r3 = None for i in range(5): r2temp_n = Res_n[2][i] for j in range(5): # Again storing away the exact number and using # evaluated numbers in computations r3temp_n = Res_n[3][j] if (comp((r1_n * r2temp_n**2 + r4_n * r3temp_n**2 - testplus).n(), 0, tol) and comp( (r3temp_n * r1_n**2 + r2temp_n * r4_n**2 - testminus).n(), 0, tol)): r2 = Res[2][i] r3 = Res[3][j] break if r2: break # Now, we have r's so we can get roots x1 = (r1 + r2 + r3 + r4) / 5 x2 = (r1 * zeta4 + r2 * zeta3 + r3 * zeta2 + r4 * zeta1) / 5 x3 = (r1 * zeta3 + r2 * zeta1 + r3 * zeta4 + r4 * zeta2) / 5 x4 = (r1 * zeta2 + r2 * zeta4 + r3 * zeta1 + r4 * zeta3) / 5 x5 = (r1 * zeta1 + r2 * zeta2 + r3 * zeta3 + r4 * zeta4) / 5 result = [x1, x2, x3, x4, x5] # Now check if solutions are distinct saw = set() for r in result: r = r.n(2) if r in saw: # Roots were identical. Abort, return [] # and fall back to usual solve return [] saw.add(r) return result
def roots_quintic(f): """ Calculate exact roots of a solvable quintic """ result = [] coeff_5, coeff_4, p, q, r, s = f.all_coeffs() # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s if coeff_4: return result if coeff_5 != 1: l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5] if not all(coeff.is_Rational for coeff in l): return result f = Poly(f/coeff_5) quintic = PolyQuintic(f) # Eqn standardized. Algo for solving starts here if not f.is_irreducible: return result f20 = quintic.f20 # Check if f20 has linear factors over domain Z if f20.is_irreducible: return result # Now, we know that f is solvable for _factor in f20.factor_list()[1]: if _factor[0].is_linear: theta = _factor[0].root(0) break d = discriminant(f) delta = sqrt(d) # zeta = a fifth root of unity zeta1, zeta2, zeta3, zeta4 = quintic.zeta T = quintic.T(theta, d) tol = S(1e-10) alpha = T[1] + T[2]*delta alpha_bar = T[1] - T[2]*delta beta = T[3] + T[4]*delta beta_bar = T[3] - T[4]*delta disc = alpha**2 - 4*beta disc_bar = alpha_bar**2 - 4*beta_bar l0 = quintic.l0(theta) l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) order = quintic.order(theta, d) test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) ) # Comparing floats if not comp(test, 0, tol): l2, l3 = l3, l2 # Now we have correct order of l's R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4 R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4 R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4 R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4 Res = [None, [None]*5, [None]*5, [None]*5, [None]*5] Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5] sol = Symbol('sol') # Simplifying improves performance a lot for exact expressions R1 = _quintic_simplify(R1) R2 = _quintic_simplify(R2) R3 = _quintic_simplify(R3) R4 = _quintic_simplify(R4) # Solve imported here. Causing problems if imported as 'solve' # and hence the changed name from sympy.solvers.solvers import solve as _solve a, b = symbols('a b', cls=Dummy) _sol = _solve( sol**5 - a - I*b, sol) for i in range(5): _sol[i] = factor(_sol[i]) R1 = R1.as_real_imag() R2 = R2.as_real_imag() R3 = R3.as_real_imag() R4 = R4.as_real_imag() for i, currentroot in enumerate(_sol): Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] })) Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] })) Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] })) Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] })) for i in range(1, 5): for j in range(5): Res_n[i][j] = Res[i][j].n() Res[i][j] = _quintic_simplify(Res[i][j]) r1 = Res[1][0] r1_n = Res_n[1][0] for i in range(5): if comp(im(r1_n*Res_n[4][i]), 0, tol): r4 = Res[4][i] break # Now we have various Res values. Each will be a list of five # values. We have to pick one r value from those five for each Res u, v = quintic.uv(theta, d) testplus = (u + v*delta*sqrt(5)).n() testminus = (u - v*delta*sqrt(5)).n() # Evaluated numbers suffixed with _n # We will use evaluated numbers for calculation. Much faster. r4_n = r4.n() r2 = r3 = None for i in range(5): r2temp_n = Res_n[2][i] for j in range(5): # Again storing away the exact number and using # evaluated numbers in computations r3temp_n = Res_n[3][j] if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)): r2 = Res[2][i] r3 = Res[3][j] break if r2: break # Now, we have r's so we can get roots x1 = (r1 + r2 + r3 + r4)/5 x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5 x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5 x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5 x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5 result = [x1, x2, x3, x4, x5] # Now check if solutions are distinct saw = set() for r in result: r = r.n(2) if r in saw: # Roots were identical. Abort, return [] # and fall back to usual solve return [] saw.add(r) return result
def test_integrate_hyperexponential(): # TODO: Add tests for integrate_hyperexponential() from the book a = Poly((1 + 2*t1 + t1**2 + 2*t1**3)*t**2 + (1 + t1**2)*t + 1 + t1**2, t) d = Poly(1, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1), Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]}) assert integrate_hyperexponential(a, d, DE) == \ (exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True) a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t) assert integrate_hyperexponential(a, d, DE) == \ ((x + tan(x))*exp(tan(x)), 0, True) a = Poly(t, t) d = Poly(1, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*x*t, t)], 'Tfuncs': [Lambda(i, exp(x**2))]}) assert integrate_hyperexponential(a, d, DE) == \ (0, NonElementaryIntegral(exp(x**2), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]}) assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True) a = Poly(25*t**6 - 10*t**5 + 7*t**4 - 8*t**3 + 13*t**2 + 2*t - 1, t) d = Poly(25*t**6 + 35*t**4 + 11*t**2 + 1, t) assert integrate_hyperexponential(a, d, DE) == \ (-(11 - 10*exp(x))/(5 + 25*exp(2*x)) + log(1 + exp(2*x)), -1, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(t0*t, t)], 'Tfuncs': [exp, Lambda(i, exp(exp(i)))]}) assert integrate_hyperexponential(Poly(2*t0*t**2, t), Poly(1, t), DE) == (exp(2*exp(x)), 0, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(-t0*t, t)], 'Tfuncs': [exp, Lambda(i, exp(-exp(i)))]}) assert integrate_hyperexponential(Poly(-27*exp(9) - 162*t0*exp(9) + 27*x*t0*exp(9), t), Poly((36*exp(18) + x**2*exp(18) - 12*x*exp(18))*t, t), DE) == \ (27*exp(exp(x))/(-6*exp(9) + x*exp(9)), 0, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]}) assert integrate_hyperexponential(Poly(x**2/2*t, t), Poly(1, t), DE) == \ ((2 - 2*x + x**2)*exp(x)/2, 0, True) assert integrate_hyperexponential(Poly(1 + t, t), Poly(t, t), DE) == \ (-exp(-x), 1, True) # x - exp(-x) assert integrate_hyperexponential(Poly(x, t), Poly(t + 1, t), DE) == \ (0, NonElementaryIntegral(x/(1 + exp(x)), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)], 'Tfuncs': [log, Lambda(i, exp(i**2))]}) elem, nonelem, b = integrate_hyperexponential(Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 + (8*t0*x**7 - 8*t0*x**6 - 4*t0*x**5 + 2*t0*x**3 + 2*t0*x**2 - t0*x + 24*x**8 - 36*x**6 - 4*x**5 + 22*x**4 + 4*x**3 - 7*x**2 - x + 1)*t1**3 + (8*t0*x**8 - 4*t0*x**6 - 16*t0*x**5 - 2*t0*x**4 + 12*t0*x**3 + t0*x**2 - 2*t0*x + 24*x**9 - 36*x**7 - 8*x**6 + 22*x**5 + 12*x**4 - 7*x**3 - 6*x**2 + x + 1)*t1**2 + (8*t0*x**8 - 8*t0*x**6 - 16*t0*x**5 + 6*t0*x**4 + 10*t0*x**3 - 2*t0*x**2 - t0*x + 8*x**10 - 12*x**8 - 4*x**7 + 2*x**6 + 12*x**5 + 3*x**4 - 9*x**3 - x**2 + 2*x)*t1 + 8*t0*x**7 - 12*t0*x**6 - 4*t0*x**5 + 8*t0*x**4 - t0*x**2 - 4*x**7 + 4*x**6 + 4*x**5 - 4*x**4 - x**3 + x**2, t1), Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 + (24*x**8 + 8*x**7 - 36*x**6 - 12*x**5 + 18*x**4 + 6*x**3 - 3*x**2 - x)*t1**3 + (24*x**9 + 24*x**8 - 36*x**7 - 36*x**6 + 18*x**5 + 18*x**4 - 3*x**3 - 3*x**2)*t1**2 + (8*x**10 + 24*x**9 - 12*x**8 - 36*x**7 + 6*x**6 + 18*x**5 - x**4 - 3*x**3)*t1 + 8*x**10 - 12*x**8 + 6*x**6 - x**4, t1), DE) assert factor(elem) == -((x - 1)*log(x)/((x + exp(x**2))*(2*x**2 - 1))) assert (nonelem, b) == (NonElementaryIntegral(exp(x**2)/(exp(x**2) + 1), x), False)
def r(a, b, c): return factor(a * x**2 + b * x + c)
def _solve_lambert(f, symbol, gens): """Return solution to ``f`` if it is a Lambert-type expression else raise NotImplementedError. The equality, ``f(x, a..f) = a*log(b*X + c) + d*X - f = 0`` has the solution, `X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))`. There are a variety of forms for `f(X, a..f)` as enumerated below: 1a1) if B**B = R for R not [0, 1] then log(B) + log(log(B)) = log(log(R)) X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R)) 1a2) if B*(b*log(B) + c)**a = R then log(B) + a*log(b*log(B) + c) = log(R) X = log(B); d=1, f=log(R) 1b) if a*log(b*B + c) + d*B = R then X = B, f = R 2a) if (b*B + c)*exp(d*B + g) = R then log(b*B + c) + d*B + g = log(R) a = 1, f = log(R) - g, X = B 2b) if -b*B + g*exp(d*B + h) = c then log(g) + d*B + h - log(b*B + c) = 0 a = -1, f = -h - log(g), X = B 3) if d*p**(a*B + g) - b*B = c then log(d) + (a*B + g)*log(p) - log(c + b*B) = 0 a = -1, d = a*log(p), f = -log(d) - g*log(p) """ nrhs, lhs = f.as_independent(symbol, as_Add=True) rhs = -nrhs lamcheck = [tmp for tmp in gens if (tmp.func in [exp, log] or (tmp.is_Pow and symbol in tmp.exp.free_symbols))] if not lamcheck: raise NotImplementedError() if lhs.is_Mul: lhs = expand_log(log(lhs)) rhs = log(rhs) lhs = factor(lhs, deep=True) # make sure we are inverted as completely as possible r = Dummy() i, lhs = _invert(lhs - r, symbol) rhs = i.xreplace({r: rhs}) # For the first ones: # 1a1) B**B = R != 0 (when 0, there is only a solution if the base is 0, # but if it is, the exp is 0 and 0**0=1 # comes back as B*log(B) = log(R) # 1a2) B*(a + b*log(B))**p = R or with monomial expanded or with whole # thing expanded comes back unchanged # log(B) + p*log(a + b*log(B)) = log(R) # lhs is Mul: # expand log of both sides to give: # log(B) + log(log(B)) = log(log(R)) # 1b) d*log(a*B + b) + c*B = R # lhs is Add: # isolate c*B and expand log of both sides: # log(c) + log(B) = log(R - d*log(a*B + b)) soln = [] if not soln: mainlog = _mostfunc(lhs, log, symbol) if mainlog: if lhs.is_Mul and rhs != 0: soln = _lambert(log(lhs) - log(rhs), symbol) elif lhs.is_Add: other = lhs.subs(mainlog, 0) if other and not other.is_Add and [ tmp for tmp in other.atoms(Pow) if symbol in tmp.free_symbols]: if not rhs: diff = log(other) - log(other - lhs) else: diff = log(lhs - other) - log(rhs - other) soln = _lambert(expand_log(diff), symbol) else: #it's ready to go soln = _lambert(lhs - rhs, symbol) # For the next two, # collect on main exp # 2a) (b*B + c)*exp(d*B + g) = R # lhs is mul: # log to give # log(b*B + c) + d*B = log(R) - g # 2b) -b*B + g*exp(d*B + h) = R # lhs is add: # add b*B # log and rearrange # log(R + b*B) - d*B = log(g) + h if not soln: mainexp = _mostfunc(lhs, exp, symbol) if mainexp: lhs = collect(lhs, mainexp) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainexp-containing term to rhs other = lhs.subs(mainexp, 0) mainterm = lhs - other rhs=rhs - other if (mainterm.could_extract_minus_sign() and rhs.could_extract_minus_sign()): mainterm *= -1 rhs *= -1 diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) # 3) d*p**(a*B + b) + c*B = R # collect on main pow # log(R - c*B) - a*B*log(p) = log(d) + b*log(p) if not soln: mainpow = _mostfunc(lhs, Pow, symbol) if mainpow and symbol in mainpow.exp.free_symbols: lhs = collect(lhs, mainpow) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainpow-containing term to rhs other = lhs.subs(mainpow, 0) mainterm = lhs - other rhs = rhs - other diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) if not soln: raise NotImplementedError('%s does not appear to have a solution in ' 'terms of LambertW' % f) return list(ordered(soln))
def equivalence_hypergeometric(A, B, func): # This method for finding the equivalence is only for 2F1 type. # We can extend it for 1F1 and 0F1 type also. x = func.args[0] # making given equation in normal form I1 = factor(cancel(A.diff(x) / 2 + A**2 / 4 - B)) # computing shifted invariant(J1) of the equation J1 = factor(cancel(x**2 * I1 + S(1) / 4)) num, dem = J1.as_numer_denom() num = powdenest(expand(num)) dem = powdenest(expand(dem)) pow_num = set() pow_dem = set() # this function will compute the different powers of variable(x) in J1. # then it will help in finding value of k. k is power of x such that we can express # J1 = x**k * J0(x**k) then all the powers in J0 become integers. def _power_counting(num): _pow = {0} for val in num: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: _pow.add(val.as_base_exp()[1]) elif val == x: _pow.add(val.as_base_exp()[1]) else: _pow.update(_power_counting(val.args)) return _pow pow_num = _power_counting((num, )) pow_dem = _power_counting((dem, )) pow_dem.update(pow_num) _pow = pow_dem k = gcd(_pow) # computing I0 of the given equation I0 = powdenest(simplify(factor(((J1 / k**2) - S(1) / 4) / ((x**k)**2))), force=True) I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1) / k)), force=True))) num, dem = I0.as_numer_denom() max_num_pow = max(_power_counting((num, ))) dem_args = dem.args sing_point = [] dem_pow = [] # calculating singular point of I0. for arg in dem_args: if arg.has(x): if isinstance(arg, Pow): # (x-a)**n dem_pow.append(arg.as_base_exp()[1]) sing_point.append( list(roots(arg.as_base_exp()[0], x).keys())[0]) else: # (x-a) type dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg, x).keys())[0]) dem_pow.sort() # checking if equivalence is exists or not. if equivalence(max_num_pow, dem_pow) == "2F1": return {'I0': I0, 'k': k, 'sing_point': sing_point, 'type': "2F1"} else: return None
def match_2nd_2F1_hypergeometric(I, k, sing_point, func): x = func.args[0] a = Wild("a") b = Wild("b") c = Wild("c") t = Wild("t") s = Wild("s") r = Wild("r") alpha = Wild("alpha") beta = Wild("beta") gamma = Wild("gamma") delta = Wild("delta") rn = {'type': None} # I0 of the standerd 2F1 equation. I0 = ((a - b + 1) * (a - b - 1) * x**2 + 2 * ((1 - a - b) * c + 2 * a * b) * x + c * (c - 2)) / (4 * x**2 * (x - 1)**2) if sing_point != [0, 1]: # If singular point is [0, 1] then we have standerd equation. eqs = [] sing_eqs = [ -beta / alpha, -delta / gamma, (delta - beta) / (alpha - gamma) ] # making equations for the finding the mobius transformation for i in range(3): if i < len(sing_point): eqs.append(Eq(sing_eqs[i], sing_point[i])) else: eqs.append(Eq(1 / sing_eqs[i], 0)) # solving above equations for the mobius transformation _beta = -alpha * sing_point[0] _delta = -gamma * sing_point[1] _gamma = alpha if len(sing_point) == 3: _gamma = (_beta + sing_point[2] * alpha) / (sing_point[2] - sing_point[1]) mob = (alpha * x + beta) / (gamma * x + delta) mob = mob.subs(beta, _beta) mob = mob.subs(delta, _delta) mob = mob.subs(gamma, _gamma) mob = cancel(mob) t = (beta - delta * x) / (gamma * x - alpha) t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma)) else: mob = x t = x # applying mobius transformation in I to make it into I0. I = I.subs(x, t) I = I * (t.diff(x))**2 I = factor(I) dict_I = {x**2: 0, x: 0, 1: 0} I0_num, I0_dem = I0.as_numer_denom() # collecting coeff of (x**2, x), of the standerd equation. # substituting (a-b) = s, (a+b) = r dict_I0 = { x**2: s**2 - 1, x: (2 * (1 - r) * c + (r + s) * (r - s)), 1: c * (c - 2) } # collecting coeff of (x**2, x) from I0 of the given equation. dict_I.update( collect(expand(cancel(I * I0_dem)), [x**2, x], evaluate=False)) eqs = [] # We are comparing the coeff of powers of different x, for finding the values of # parameters of standerd equation. for key in [x**2, x, 1]: eqs.append(Eq(dict_I[key], dict_I0[key])) # We can have many possible roots for the equation. # I am selecting the root on the basis that when we have # standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x) # then root should be a, b, c. _c = 1 - factor(sqrt(1 + eqs[2].lhs)) if not _c.has(Symbol): _c = min(list(roots(eqs[2], c))) _s = factor(sqrt(eqs[0].lhs + 1)) _r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2 * _c)) _a = (_r + _s) / 2 _b = (_r - _s) / 2 rn = { 'a': simplify(_a), 'b': simplify(_b), 'c': simplify(_c), 'k': k, 'mobius': mob, 'type': "2F1" } return rn
def _bench_R9(): "factor(x^20 - pi^5*y^20)" factor(x**20 - pi**5*y**20)
def test_factor(): assert factor(A*B - B*A) == A*B - B*A
def test_rsolve(): f = y(n + 2) - y(n + 1) - y(n) h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \ - sqrt(5)*(S.Half - S.Half*sqrt(5))**n assert rsolve(f, y(n)) in [ C0 * (S.Half - S.Half * sqrt(5))**n + C1 * (S.Half + S.Half * sqrt(5))**n, C1 * (S.Half - S.Half * sqrt(5))**n + C0 * (S.Half + S.Half * sqrt(5))**n, ] assert rsolve(f, y(n), [0, 5]) == h assert rsolve(f, y(n), {0: 0, 1: 5}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1) * y(n + 2) - (n**2 + 3 * n - 2) * y(n + 1) + 2 * n * (n + 1) * y(n) g = C1 * factorial(n) + C0 * 2**n h = -3 * factorial(n) + 3 * 2**n assert rsolve(f, y(n)) == g assert rsolve(f, y(n), []) == g assert rsolve(f, y(n), {}) == g assert rsolve(f, y(n), [0, 3]) == h assert rsolve(f, y(n), {0: 0, 1: 3}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - y(n - 1) - 2 assert rsolve(f, y(n), {y(0): 0}) == 2 * n assert rsolve(f, y(n), {y(0): 1}) == 2 * n + 1 assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = 3 * y(n - 1) - y(n) - 1 assert rsolve(f, y(n), {y(0): 0}) == -3**n / 2 + S.Half assert rsolve(f, y(n), {y(0): 1}) == 3**n / 2 + S.Half assert rsolve(f, y(n), {y(0): 2}) == 3 * 3**n / 2 + S.Half assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1 / n * y(n - 1) assert rsolve(f, y(n)) == C0 / factorial(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1 / n * y(n - 1) - 1 assert rsolve(f, y(n)) is None f = 2 * y(n - 1) + (1 - n) * y(n) / n assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1) * n assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1) * n * 2 assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1) * n * 3 assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1) * (n - 2) * y(n + 2) - (n + 1) * (n + 2) * y(n) assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n * (n - 1) * (n - 2) assert rsolve(f, y(n), { y(3): 6, y(4): -24 }) == -n * (n - 1) * (n - 2) * (-1)**(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 assert rsolve(Eq(y(n + 1), a * y(n)), y(n), {y(1): a}).simplify() == a**n assert rsolve(y(n) - a*y(n-2),y(n), \ {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \ a**(n/2)*(-(-1)**n*b + a) f = (-16 * n**2 + 32 * n - 12) * y(n - 1) + (4 * n**2 - 12 * n + 9) * y(n) yn = rsolve(f, y(n), {y(1): binomial(2 * n + 1, 3)}) sol = 2**(2 * n) * n * (2 * n - 1)**2 * (2 * n + 1) / 12 assert factor(expand(yn, func=True)) == sol sol = rsolve(y(n) + a * (y(n + 1) + y(n - 1)) / 2, y(n)) Y = lambda i: sol.subs(n, i) assert (Y(n) + a * (Y(n + 1) + Y(n - 1)) / 2).expand().cancel() == 0 assert rsolve((k + 1) * y(k), y(k)) is None assert (rsolve((k + 1) * y(k) + (k + 3) * y(k + 1) + (k + 5) * y(k + 2), y(k)) is None) assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n * C0 - 2**n / 3 - 3**n / 4
def _solve_lambert(f, symbol, gens): """Return solution to ``f`` if it is a Lambert-type expression else raise NotImplementedError. For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``. There are a variety of forms for `f(X, a..f)` as enumerated below: 1a1) if B**B = R for R not in [0, 1] (since those cases would already be solved before getting here) then log of both sides gives log(B) + log(log(B)) = log(log(R)) and X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R)) 1a2) if B*(b*log(B) + c)**a = R then log of both sides gives log(B) + a*log(b*log(B) + c) = log(R) and X = log(B), d=1, f=log(R) 1b) if a*log(b*B + c) + d*B = R and X = B, f = R 2a) if (b*B + c)*exp(d*B + g) = R then log of both sides gives log(b*B + c) + d*B + g = log(R) and X = B, a = 1, f = log(R) - g 2b) if g*exp(d*B + h) - b*B = c then the log form is log(g) + d*B + h - log(b*B + c) = 0 and X = B, a = -1, f = -h - log(g) 3) if d*p**(a*B + g) - b*B = c then the log form is log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p) """ def _solve_even_degree_expr(expr, t, symbol): """Return the unique solutions of equations derived from ``expr`` by replacing ``t`` with ``+/- symbol``. Parameters ========== expr : Expr The expression which includes a dummy variable t to be replaced with +symbol and -symbol. symbol : Symbol The symbol for which a solution is being sought. Returns ======= List of unique solution of the two equations generated by replacing ``t`` with positive and negative ``symbol``. Notes ===== If ``expr = 2*log(t) + x/2` then solutions for ``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are returned by this function. Though this may seem counter-intuitive, one must note that the ``expr`` being solved here has been derived from a different expression. For an expression like ``eq = x**2*g(x) = 1``, if we take the log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If x is positive then this simplifies to ``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will return solutions for this, but we must also consider the solutions for ``2*log(-x) + log(g(x))`` since those must also be a solution of ``eq`` which has the same value when the ``x`` in ``x**2`` is negated. If `g(x)` does not have even powers of symbol then we don't want to replace the ``x`` there with ``-x``. So the role of the ``t`` in the expression received by this function is to mark where ``+/-x`` should be inserted before obtaining the Lambert solutions. """ nlhs, plhs = [expr.xreplace({t: sgn * symbol}) for sgn in (-1, 1)] sols = _solve_lambert(nlhs, symbol, gens) if plhs != nlhs: sols.extend(_solve_lambert(plhs, symbol, gens)) # uniq is needed for a case like # 2*log(t) - log(-z**2) + log(z + log(x) + log(z)) # where subtituting t with +/-x gives all the same solution; # uniq, rather than list(set()), is used to maintain canonical # order return list(uniq(sols)) nrhs, lhs = f.as_independent(symbol, as_Add=True) rhs = -nrhs lamcheck = [ tmp for tmp in gens if (tmp.func in [exp, log] or ( tmp.is_Pow and symbol in tmp.exp.free_symbols)) ] if not lamcheck: raise NotImplementedError() if lhs.is_Add or lhs.is_Mul: # replacing all even_degrees of symbol with dummy variable t # since these will need special handling; non-Add/Mul do not # need this handling t = Dummy('t', **symbol.assumptions0) lhs = lhs.replace( lambda i: # find symbol**even i.is_Pow and i.base == symbol and i.exp.is_even, lambda i: # replace t**even t**i.exp) if lhs.is_Add and lhs.has(t): t_indep = lhs.subs(t, 0) t_term = lhs - t_indep _rhs = rhs - t_indep if not t_term.is_Add and _rhs and not (t_term.has( S.ComplexInfinity, S.NaN)): eq = expand_log(log(t_term) - log(_rhs)) return _solve_even_degree_expr(eq, t, symbol) elif lhs.is_Mul and rhs: # this needs to happen whether t is present or not lhs = expand_log(log(lhs), force=True) rhs = log(rhs) if lhs.has(t) and lhs.is_Add: # it expanded from Mul to Add eq = lhs - rhs return _solve_even_degree_expr(eq, t, symbol) # restore symbol in lhs lhs = lhs.xreplace({t: symbol}) lhs = powsimp(factor(lhs, deep=True)) # make sure we have inverted as completely as possible r = Dummy() i, lhs = _invert(lhs - r, symbol) rhs = i.xreplace({r: rhs}) # For the first forms: # # 1a1) B**B = R will arrive here as B*log(B) = log(R) # lhs is Mul so take log of both sides: # log(B) + log(log(B)) = log(log(R)) # 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so # lhs is Mul, so take log of both sides: # log(B) + a*log(b*log(B) + c) = log(R) # 1b) d*log(a*B + b) + c*B = R will arrive unchanged so # lhs is Add, so isolate c*B and expand log of both sides: # log(c) + log(B) = log(R - d*log(a*B + b)) soln = [] if not soln: mainlog = _mostfunc(lhs, log, symbol) if mainlog: if lhs.is_Mul and rhs != 0: soln = _lambert(log(lhs) - log(rhs), symbol) elif lhs.is_Add: other = lhs.subs(mainlog, 0) if other and not other.is_Add and [ tmp for tmp in other.atoms(Pow) if symbol in tmp.free_symbols ]: if not rhs: diff = log(other) - log(other - lhs) else: diff = log(lhs - other) - log(rhs - other) soln = _lambert(expand_log(diff), symbol) else: #it's ready to go soln = _lambert(lhs - rhs, symbol) # For the next forms, # # collect on main exp # 2a) (b*B + c)*exp(d*B + g) = R # lhs is mul, so take log of both sides: # log(b*B + c) + d*B = log(R) - g # 2b) g*exp(d*B + h) - b*B = R # lhs is add, so add b*B to both sides, # take the log of both sides and rearrange to give # log(R + b*B) - d*B = log(g) + h if not soln: mainexp = _mostfunc(lhs, exp, symbol) if mainexp: lhs = collect(lhs, mainexp) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainexp-containing term to rhs other = lhs.subs(mainexp, 0) mainterm = lhs - other rhs = rhs - other if (mainterm.could_extract_minus_sign() and rhs.could_extract_minus_sign()): mainterm *= -1 rhs *= -1 diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) # For the last form: # # 3) d*p**(a*B + g) - b*B = c # collect on main pow, add b*B to both sides, # take log of both sides and rearrange to give # a*B*log(p) - log(b*B + c) = -log(d) - g*log(p) if not soln: mainpow = _mostfunc(lhs, Pow, symbol) if mainpow and symbol in mainpow.exp.free_symbols: lhs = collect(lhs, mainpow) if lhs.is_Mul and rhs != 0: # b*B = 0 soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainpow-containing term to rhs other = lhs.subs(mainpow, 0) mainterm = lhs - other rhs = rhs - other diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) if not soln: raise NotImplementedError('%s does not appear to have a solution in ' 'terms of LambertW' % f) return list(ordered(soln))
def _simplify(expr): if dom.is_Composite: return factor(expr) else: return simplify(expr)
def test_gauss_opt(): mat = RayTransferMatrix(1, 2, 3, 4) assert mat == Matrix([[1, 2], [3, 4]]) assert mat == RayTransferMatrix(Matrix([[1, 2], [3, 4]])) assert [mat.A, mat.B, mat.C, mat.D] == [1, 2, 3, 4] d, f, h, n1, n2, R = symbols('d f h n1 n2 R') lens = ThinLens(f) assert lens == Matrix([[1, 0], [-1 / f, 1]]) assert lens.C == -1 / f assert FreeSpace(d) == Matrix([[1, d], [0, 1]]) assert FlatRefraction(n1, n2) == Matrix([[1, 0], [0, n1 / n2]]) assert CurvedRefraction(R, n1, n2) == Matrix([[1, 0], [(n1 - n2) / (R * n2), n1 / n2]]) assert FlatMirror() == Matrix([[1, 0], [0, 1]]) assert CurvedMirror(R) == Matrix([[1, 0], [-2 / R, 1]]) assert ThinLens(f) == Matrix([[1, 0], [-1 / f, 1]]) mul = CurvedMirror(R) * FreeSpace(d) mul_mat = Matrix([[1, 0], [-2 / R, 1]]) * Matrix([[1, d], [0, 1]]) assert mul.A == mul_mat[0, 0] assert mul.B == mul_mat[0, 1] assert mul.C == mul_mat[1, 0] assert mul.D == mul_mat[1, 1] angle = symbols('angle') assert GeometricRay(h, angle) == Matrix([[h], [angle]]) assert FreeSpace(d) * GeometricRay(h, angle) == Matrix([[angle * d + h], [angle]]) assert GeometricRay(Matrix(((h, ), (angle, )))) == Matrix([[h], [angle]]) assert (FreeSpace(d) * GeometricRay(h, angle)).height == angle * d + h assert (FreeSpace(d) * GeometricRay(h, angle)).angle == angle p = BeamParameter(530e-9, 1, w=1e-3) assert streq(p.q, 1 + 1.88679245283019 * I * pi) assert streq(N(p.q), 1.0 + 5.92753330865999 * I) assert streq(N(p.w_0), Float(0.00100000000000000)) assert streq(N(p.z_r), Float(5.92753330865999)) fs = FreeSpace(10) p1 = fs * p assert streq(N(p.w), Float(0.00101413072159615)) assert streq(N(p1.w), Float(0.00210803120913829)) w, wavelen = symbols('w wavelen') assert waist2rayleigh(w, wavelen) == pi * w**2 / wavelen z_r, wavelen = symbols('z_r wavelen') assert rayleigh2waist(z_r, wavelen) == sqrt(wavelen * z_r) / sqrt(pi) a, b, f = symbols('a b f') assert geometric_conj_ab(a, b) == a * b / (a + b) assert geometric_conj_af(a, f) == a * f / (a - f) assert geometric_conj_bf(b, f) == b * f / (b - f) assert geometric_conj_ab(oo, b) == b assert geometric_conj_ab(a, oo) == a s_in, z_r_in, f = symbols('s_in z_r_in f') assert gaussian_conj(s_in, z_r_in, f)[0] == 1 / (-1 / (s_in + z_r_in**2 / (-f + s_in)) + 1 / f) assert gaussian_conj( s_in, z_r_in, f)[1] == z_r_in / (1 - s_in**2 / f**2 + z_r_in**2 / f**2) assert gaussian_conj( s_in, z_r_in, f)[2] == 1 / sqrt(1 - s_in**2 / f**2 + z_r_in**2 / f**2) l, w_i, w_o, f = symbols('l w_i w_o f') assert conjugate_gauss_beams( l, w_i, w_o, f=f)[0] == f * (-sqrt(w_i**2 / w_o**2 - pi**2 * w_i**4 / (f**2 * l**2)) + 1) assert factor(conjugate_gauss_beams( l, w_i, w_o, f=f)[1]) == f * w_o**2 * (w_i**2 / w_o**2 - sqrt(w_i**2 / w_o**2 - pi**2 * w_i**4 / (f**2 * l**2))) / w_i**2 assert conjugate_gauss_beams(l, w_i, w_o, f=f)[2] == f z, l, w = symbols('z l r', positive=True) p = BeamParameter(l, z, w=w) assert p.radius == z * (pi**2 * w**4 / (l**2 * z**2) + 1) assert p.w == w * sqrt(l**2 * z**2 / (pi**2 * w**4) + 1) assert p.w_0 == w assert p.divergence == l / (pi * w) assert p.gouy == atan2(z, pi * w**2 / l) assert p.waist_approximation_limit == 2 * l / pi