def render_as_module(definitions, name, declarations=(), printer_settings=None): """ Creates a ``Module`` instance and renders it as a string. This generates Fortran source code for a module with the correct ``use`` statements. Parameters ========== definitions : iterable Passed to :class:`sympy.codegen.fnodes.Module`. name : str Passed to :class:`sympy.codegen.fnodes.Module`. declarations : iterable Passed to :class:`sympy.codegen.fnodes.Module`. It will be extended with use statements, 'implicit none' and public list generated from ``definitions``. printer_settings : dict Passed to ``FCodePrinter`` (default: ``{'standard': 2003, 'source_format': 'free'}``). """ printer_settings = printer_settings or {'standard': 2003, 'source_format': 'free'} printer = FCodePrinter(printer_settings) dummy = Dummy() if isinstance(definitions, Module): raise ValueError("This function expects to construct a module on its own.") mod = Module(name, chain(declarations, [dummy]), definitions) fstr = printer.doprint(mod) module_use_str = ' %s\n' % ' \n'.join(['use %s, only: %s' % (k, ', '.join(v)) for k, v in printer.module_uses.items()]) module_use_str += ' implicit none\n' module_use_str += ' private\n' module_use_str += ' public %s\n' % ', '.join([str(node.name) for node in definitions if getattr(node, 'name', None)]) return fstr.replace(printer.doprint(dummy), module_use_str)
def test_case(): ob = FCodePrinter() x, x_, x__, y, X, X_, Y = symbols('x,x_,x__,y,X,X_,Y') assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \ ' exp(x_) + sin(x*y) + cos(X__*Y_)' assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \ ' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)' assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \ ' exp(x_) + sin(x*y) + cos(X*Y)' assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)' assert ob.doprint(X * sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__' assert ob.doprint(X * sin(x), assign_to='mu') == ' mu = X*sin(x_)' assert ob.doprint(x_, assign_to='ad') == ' ad = x__' n, m = symbols('n,m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) I = Idx('I', n) assert fcode( A[i, I] * x[I], assign_to=y[i], source_format='free') == ("do i = 1, m\n" " y(i) = 0\n" "end do\n" "do i = 1, m\n" " do I_ = 1, n\n" " y(i) = A(i, I_)*x(I_) + y(i)\n" " end do\n" "end do")
def test_free_form_comment_line(): printer = FCodePrinter({'source_format': 'free'}) lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"] expected = [ '! This is a long comment on a single line that must be wrapped properly', '! to produce nice output'] assert printer._wrap_fortran(lines) == expected
def test_indent(): codelines = ('subroutine test(a)\n' 'integer :: a, i, j\n' '\n' 'do\n' 'do \n' 'do j = 1, 5\n' 'if (a>b) then\n' 'if(b>0) then\n' 'a = 3\n' 'donot_indent_me = 2\n' 'do_not_indent_me_either = 2\n' 'ifIam_indented_something_went_wrong = 2\n' 'if_I_am_indented_something_went_wrong = 2\n' 'end should not be unindented here\n' 'end if\n' 'endif\n' 'end do\n' 'end do\n' 'enddo\n' 'end subroutine\n' '\n' 'subroutine test2(a)\n' 'integer :: a\n' 'do\n' 'a = a + 1\n' 'end do \n' 'end subroutine\n') expected = ('subroutine test(a)\n' 'integer :: a, i, j\n' '\n' 'do\n' ' do \n' ' do j = 1, 5\n' ' if (a>b) then\n' ' if(b>0) then\n' ' a = 3\n' ' donot_indent_me = 2\n' ' do_not_indent_me_either = 2\n' ' ifIam_indented_something_went_wrong = 2\n' ' if_I_am_indented_something_went_wrong = 2\n' ' end should not be unindented here\n' ' end if\n' ' endif\n' ' end do\n' ' end do\n' 'enddo\n' 'end subroutine\n' '\n' 'subroutine test2(a)\n' 'integer :: a\n' 'do\n' ' a = a + 1\n' 'end do \n' 'end subroutine\n') p = FCodePrinter({'source_format': 'free'}) result = p.indent_code(codelines) assert result == expected
def test_wrap_fortran(): # "########################################################################" printer = FCodePrinter() lines = [ "C This is a long comment on a single line that must be wrapped properly to produce nice output", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly", ] wrapped_lines = printer._wrap_fortran(lines) expected_lines = [ "C This is a long comment on a single line that must be wrapped", "C properly to produce nice output", " this = is + a + long + and + nasty + fortran + statement + that *", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that *", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ *must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement +", " @ that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ **must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ **must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement +", " @ that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)", " @ /must + be + wrapped + properly", ] for line in wrapped_lines: assert len(line) <= 72 for w, e in zip(wrapped_lines, expected_lines): assert w == e assert len(wrapped_lines) == len(expected_lines)
def __init__( self, print_indexed_cb=print_fortran_indexed, openmp=True, default_type='real', heap_interm=True, explicit_bounds=False, **kwargs ): """Initialize a naive Fortran code printer. """ if openmp: add_templ = { 'term_prelude': _FORTRAN_OMP_TERM_PRELUDE, 'term_finale': _FORTRAN_OMP_TERM_FINALE, } else: add_templ = None super().__init__( FCodePrinter(settings={'source_format': 'free'}), print_indexed_cb=print_indexed_cb, line_cont='&', add_templ=add_templ, **kwargs ) self._openmp = openmp self._default_type = default_type self._heap_interm = heap_interm self._explicit_bounds = explicit_bounds
def test_wrap_fortran_keep_d0(): printer = FCodePrinter() lines = [ ' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0' ] expected = [ ' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 10.0d0' ] assert printer._wrap_fortran(lines) == expected
def test_fcode_NumberSymbol(): prec = 17 p = FCodePrinter() assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec) assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec) assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec) assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec) assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec) assert fcode( pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5) assert fcode(Catalan, human=False) == (set( [(Catalan, p._print(Catalan.evalf(prec)))]), set([]), ' Catalan') assert fcode(EulerGamma, human=False) == (set([(EulerGamma, p._print( EulerGamma.evalf(prec)))]), set([]), ' EulerGamma') assert fcode(E, human=False) == ( set([(E, p._print(E.evalf(prec)))]), set([]), ' E') assert fcode(GoldenRatio, human=False) == (set([(GoldenRatio, p._print( GoldenRatio.evalf(prec)))]), set([]), ' GoldenRatio') assert fcode(pi, human=False) == ( set([(pi, p._print(pi.evalf(prec)))]), set([]), ' pi') assert fcode(pi, precision=5, human=False) == ( set([(pi, p._print(pi.evalf(5)))]), set([]), ' pi')
def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A SymPy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. name_mangling : bool, optional If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of ``_`` at the end. If False, SymPy Will not interfere with naming of variables. [default=True] Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ from sympy.printing.fortran import FCodePrinter return FCodePrinter(settings).doprint(expr, assign_to)
def __init__(self, *args, **kwargs): FCodePrinter.__init__(self, *args, **kwargs)