Example #1
0
def test_diopcoverage():
    eq = (2 * x + y + 1)**2
    assert diop_solve(eq) == set([(t_0, -2 * t_0 - 1)])
    eq = 2 * x**2 + 6 * x * y + 12 * x + 4 * y**2 + 18 * y + 18
    assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2 * t_0 - 3, -t_0)])
    assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)])

    assert diop_linear(x + y - 3) == (t_0, 3 - t_0)

    assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
    ans = (3 * t - 1, -2 * t + 1)
    assert base_solution_linear(4, 8, 12, t) == ans
    assert base_solution_linear(4, 8, 12,
                                t=None) == tuple(_.subs(t, 0) for _ in ans)

    assert cornacchia(1, 1, 20) is None
    assert cornacchia(1, 1, 5) == set([(2, 1)])
    assert cornacchia(1, 2, 17) == set([(3, 2)])

    raises(ValueError, lambda: reconstruct(4, 20, 1))

    assert gaussian_reduce(4, 1, 3) == (1, 1)
    eq = -w**2 - x**2 - y**2 + z**2

    assert diop_general_pythagorean(eq) == \
        diop_general_pythagorean(-eq) == \
            (m1**2 + m2**2 - m3**2, 2*m1*m3,
            2*m2*m3, m1**2 + m2**2 + m3**2)

    assert check_param(S(3) + x / 3, S(4) + x / 2, S(2), x) == (None, None)
    assert check_param(S(3) / 2, S(4) + x, S(2), x) == (None, None)
    assert check_param(S(4) + x, S(3) / 2, S(2), x) == (None, None)

    assert _nint_or_floor(16, 10) == 2
    assert _odd(1) == (not _even(1)) == True
    assert _odd(0) == (not _even(0)) == False
    assert _remove_gcd(2, 4, 6) == (1, 2, 3)
    raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
    assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)  == \
        (11, 1, 5)

    # it's ok if these pass some day when the solvers are implemented
    raises(NotImplementedError,
           lambda: diophantine(x**2 + y**2 + x * y + 2 * y * z - 12))
    raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
    assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
        set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)])
Example #2
0
def test_diopcoverage():
    eq = (2*x + y + 1)**2
    assert diop_solve(eq) == set([(t_0, -2*t_0 - 1)])
    eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
    assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)])
    assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)])

    assert diop_linear(x + y - 3) == (t_0, 3 - t_0)

    assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
    ans = (3*t - 1, -2*t + 1)
    assert base_solution_linear(4, 8, 12, t) == ans
    assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)

    assert cornacchia(1, 1, 20) is None
    assert cornacchia(1, 1, 5) == set([(2, 1)])
    assert cornacchia(1, 2, 17) == set([(3, 2)])

    raises(ValueError, lambda: reconstruct(4, 20, 1))

    assert gaussian_reduce(4, 1, 3) == (1, 1)
    eq = -w**2 - x**2 - y**2 + z**2

    assert diop_general_pythagorean(eq) == \
        diop_general_pythagorean(-eq) == \
            (m1**2 + m2**2 - m3**2, 2*m1*m3,
            2*m2*m3, m1**2 + m2**2 + m3**2)

    assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None)
    assert check_param(S(3)/2, S(4) + x, S(2), x) == (None, None)
    assert check_param(S(4) + x, S(3)/2, S(2), x) == (None, None)

    assert _nint_or_floor(16, 10) == 2
    assert _odd(1) == (not _even(1)) == True
    assert _odd(0) == (not _even(0)) == False
    assert _remove_gcd(2, 4, 6) == (1, 2, 3)
    raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
    assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)  == \
        (11, 1, 5)

    # it's ok if these pass some day when the solvers are implemented
    raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
    raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
    assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
        set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)])
Example #3
0
def main():
    f = open('1.pub')
    pk1 = RSA.importKey(f.read())

    f = open('2.pub')
    pk2 = RSA.importKey(f.read())

    print('-' * 10 + "pk1 info" + '-' * 10)
    print("e ", pk1.e)
    print("m ", pk1.n)

    print('-' * 10 + "pk2 info" + '-' * 10)
    print("e ", pk2.e)
    print("m ", pk2.n)

    f = open('m1.enc')
    m1 = base64.b64decode(f.read()).hex()

    f = open('m2.enc')
    m2 = base64.b64decode(f.read()).hex()

    print('-' * 10 + "m1 is " + '-' * 10)
    print(m1)

    print('-' * 10 + "m2 is " + '-' * 10)
    print(m2)

    e1 = pk1.e
    e2 = pk2.e
    n = pk1.n
    sol = base_solution_linear(1, e1, -e2)
    x = int(sol[0])
    y = -int(sol[1])
    # print(x, y)

    m1 = int(m1, 16)
    m2 = int(m2, 16)

    # print(e1 * x + e2 * y) # double checking

    message = (pow(m1, x, n) * pow(gmpy2.invert(m2, n), -y, n)) % n
    print(message)

    s = hex(message)[2:]
    b = bytes.fromhex(s)
    print(b.decode("ascii"))