Example #1
0
def test_issue_9522():
    x = Symbol('x')
    expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
    expr2 = Eq(1/x + x, 1/x)

    assert solveset(expr1, x, S.Reals) == EmptySet()
    assert solveset(expr2, x, S.Reals) == EmptySet()
Example #2
0
File: util.py Project: tclose/sympy
    def elm_domain(expr, intrvl):
        """ Finds the domain of an expression in any given interval """
        from sympy.solvers.solveset import solveset

        _start = intrvl.start
        _end = intrvl.end
        _singularities = solveset(expr.as_numer_denom()[1], symb,
                                  domain=S.Reals)

        if intrvl.right_open:
            if _end is S.Infinity:
                _domain1 = S.Reals
            else:
                _domain1 = solveset(expr < _end, symb, domain=S.Reals)
        else:
            _domain1 = solveset(expr <= _end, symb, domain=S.Reals)

        if intrvl.left_open:
            if _start is S.NegativeInfinity:
                _domain2 = S.Reals
            else:
                _domain2 = solveset(expr > _start, symb, domain=S.Reals)
        else:
            _domain2 = solveset(expr >= _start, symb, domain=S.Reals)

        # domain in the interval
        expr_with_sing = Intersection(_domain1, _domain2)
        expr_domain = Complement(expr_with_sing, _singularities)
        return expr_domain
Example #3
0
def test_issue_9522():
    x = Symbol("x", real=True)
    expr1 = Eq(1 / (x ** 2 - 4) + x, 1 / (x ** 2 - 4) + 2)
    expr2 = Eq(1 / x + x, 1 / x)

    assert solveset(expr1, x) == EmptySet()
    assert solveset(expr2, x) == EmptySet()
Example #4
0
def test_issue_9556():
    x = Symbol("x", real=True)
    b = Symbol("b", positive=True)

    assert solveset(Abs(x) + 1, x) == EmptySet()
    assert solveset(Abs(x) + b, x) == EmptySet()
    assert solveset(Eq(b, -1), b) == EmptySet()
Example #5
0
def test_issue_9556():
    x = Symbol('x')
    b = Symbol('b', positive=True)

    assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
    assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
    assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
Example #6
0
def test_issue_9778():
    assert solveset(x ** 3 + 1, x, S.Reals) == FiniteSet(-1)
    assert solveset(x ** (S(3) / 5) + 1, x, S.Reals) == S.EmptySet
    assert solveset(x ** 3 + y, x, S.Reals) == Intersection(
        Interval(-oo, oo),
        FiniteSet((-y) ** (S(1) / 3) * Piecewise((1, Ne(-im(y), 0)), ((-1) ** (S(2) / 3), -y < 0), (1, True))),
    )
Example #7
0
def test_issue_9611():
    x = Symbol("x")
    a = Symbol("a")
    y = Symbol("y")

    assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
    assert solveset(Eq(y - y + a, a), y) == S.Complexes
Example #8
0
def test_issue_9611():
    x = Symbol('x')
    a = Symbol('a')
    y = Symbol('y')

    assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
    assert solveset(Eq(y - y + a, a), y) == S.Complexes
Example #9
0
def test_issue_9611():
    x = Symbol("x", real=True)
    a = Symbol("a", real=True)
    y = Symbol("y")

    assert solveset(Eq(x - x + a, a), x) == S.Reals
    assert solveset(Eq(y - y + a, a), y) == S.Complex
Example #10
0
    def contains(self, other):
        """
        Is the other GeometryEntity contained within this Segment?

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 1), Point(3, 4)
        >>> s = Segment(p1, p2)
        >>> s2 = Segment(p2, p1)
        >>> s.contains(s2)
        True
        """
        if isinstance(other, Segment):
            return other.p1 in self and other.p2 in self
        elif isinstance(other, Point):
            if Point.is_collinear(self.p1, self.p2, other):
                t = Dummy('t')
                x, y = self.arbitrary_point(t).args
                if self.p1.x != self.p2.x:
                    ti = list(solveset(x - other.x, t))[0]
                else:
                    ti = list(solveset(y - other.y, t))[0]
                if ti.is_number:
                    return 0 <= ti <= 1
                return None

        return False
Example #11
0
File: util.py Project: ataber/sympy
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Examples
    ========
    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    (-oo, 0) U (0, oo)
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    [0, pi/2) U (pi/2, pi]
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    [2, 5]
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    (1/2, oo)

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denom == 2:
                constraint = solve_univariate_inequality(atom.base >= 0,
                                                         symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            if predicate and denom == 2:
                sings = solveset(1/f, symbol, domain)
                break
        else:
            sings = Intersection(solveset(1/f, symbol), domain)

    except:
        raise NotImplementedError("Methods for determining the continuous domains"
                                  " of this function has not been developed.")

    return domain - sings
Example #12
0
 def _contains(self, other):
     from sympy.matrices import Matrix
     from sympy.solvers.solveset import solveset, linsolve
     from sympy.utilities.iterables import iterable, cartes
     L = self.lamda
     if self._is_multivariate():
         if not iterable(L.expr):
             if iterable(other):
                 return S.false
             return other.as_numer_denom() in self.func(
                 Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
         if len(L.expr) != len(self.lamda.variables):
             raise NotImplementedError(filldedent('''
 Dimensions of input and output of Lambda are different.'''))
         eqs = [expr - val for val, expr in zip(other, L.expr)]
         variables = L.variables
         free = set(variables)
         if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
             solns = list(linsolve([e - val for e, val in
             zip(L.expr, other)], variables))
         else:
             syms = [e.free_symbols & free for e in eqs]
             solns = {}
             for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                 if not s:
                     if e != v:
                         return S.false
                     solns[vars[i]] = [v]
                     continue
                 elif len(s) == 1:
                     sy = s.pop()
                     sol = solveset(e, sy)
                     if sol is S.EmptySet:
                         return S.false
                     elif isinstance(sol, FiniteSet):
                         solns[sy] = list(sol)
                     else:
                         raise NotImplementedError
                 else:
                     raise NotImplementedError
             solns = cartes(*[solns[s] for s in variables])
     else:
         # assume scalar -> scalar mapping
         solnsSet = solveset(L.expr - other, L.variables[0])
         if solnsSet.is_FiniteSet:
             solns = list(solnsSet)
         else:
             raise NotImplementedError(filldedent('''
             Determining whether an ImageSet contains %s has not
             been implemented.''' % func_name(other)))
     for soln in solns:
         try:
             if soln in self.base_set:
                 return S.true
         except TypeError:
             return self.base_set.contains(soln.evalf())
     return S.false
Example #13
0
def test_issue_11174():
    r, t = symbols('r t')
    eq = z**2 + exp(2*x) - sin(y)
    soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
    assert solveset(eq, x, S.Reals) == soln

    eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
    s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
    soln = Intersection(S.Reals, FiniteSet(s))
    assert solveset(eq, x, S.Reals) == soln
Example #14
0
def test_invert_real():
    x = Symbol('x', real=True)
    x = Dummy(real=True)
    n = Symbol('n')
    d = Dummy()
    assert solveset(abs(x) - n, x) == solveset(abs(x) - d, x) == EmptySet()

    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    assert invert_real(Abs(x), y, x) == (x, FiniteSet(-y, y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
    assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y)/log(2))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,
                                                     FiniteSet(-y - 1, y - 1))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
Example #15
0
def test_piecewise():
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))

    absxm3 = Piecewise((x - 3, S(0) <= x - 3), (3 - x, S(0) > x - 3))
    y = Symbol("y", positive=True)
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)

    f = Piecewise(((x - 2) ** 2, x >= 0), (0, True))
    assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))

    assert solveset(Piecewise((x + 1, x > 0), (I, True)) - I, x) == Interval(-oo, 0)
Example #16
0
def test_conditonset():
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
        ConditionSet(x, True, S.Reals)

    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \
        ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)

    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \
        ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))

    assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \
        imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)

    assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \
        ConditionSet(x, x + sin(x) > 1, S.Reals)
Example #17
0
    def codomain_interval(f, set_val, *sym):
        symb = sym[0]
        df1 = diff(f, symb)
        df2 = diff(df1, symb)
        der_zero = solveset(df1, symb, domain=S.Reals)
        der_zero_in_dom = closure_handle(set_val, der_zero)

        local_maxima = set()
        local_minima = set()
        start_val = limit(f, symb, set_val.start)
        end_val = limit(f, symb, set_val.end, '-')

        if start_val is S.Infinity or end_val is S.Infinity:
            local_maxima = set([(oo, True)])
        elif start_val is S.NegativeInfinity or end_val is S.NegativeInfinity:
            local_minima = set([(-oo, True)])

        if (not start_val.is_real) or (not end_val.is_real):
            raise ValueError('Function does not contain all points of %s '
                            'as its domain' % (domain))

        if local_maxima == set():
            if start_val > end_val:
                local_maxima = set([(start_val, set_val.left_open)])
            elif start_val < end_val:
                local_maxima = set([(end_val, set_val.right_open)])
            else:
                local_maxima = set([(start_val, set_val.left_open and set_val.right_open)])

        if local_minima == set():
            if start_val < end_val:
                local_minima = set([(start_val, set_val.left_open)])
            elif start_val > end_val:
                local_minima = set([(end_val, set_val.right_open)])
            else:
                local_minima = set([(start_val, set_val.left_open and set_val.right_open)])

        for i in der_zero_in_dom:
            exist = not i in set_val
            if df2.subs({symb: i}) < 0:
                local_maxima.add((f.subs({symb: i}), exist))
            elif df2.subs({symb: i}) > 0:
                local_minima.add((f.subs({symb: i}), exist))

        maximum = (-oo, True)
        minimum = (oo, True)

        for i in local_maxima:
            if i[0] > maximum[0]:
                maximum = i
            elif i[0] == maximum[0]:
                maximum = (maximum[0], i[1] and maximum[1])

        for i in local_minima:
            if i[0] < minimum[0]:
                minimum = i
            elif i[0] == minimum[0]:
                minimum = (minimum[0], i[1] and minimum[1])

        return Union(Interval(minimum[0], maximum[0], minimum[1], maximum[1]))
Example #18
0
 def _eval_subs(self, old, new):
     if old in self.variables:
         newexpr = self.expr.subs(old, new)
         i = self.variables.index(old)
         newvars = list(self.variables)
         newpt = list(self.point)
         if new.is_Symbol:
             newvars[i] = new
         else:
             syms = new.free_symbols
             if len(syms) == 1 or old in syms:
                 if old in syms:
                     var = self.variables[i]
                 else:
                     var = syms.pop()
                 # First, try to substitute self.point in the "new"
                 # expr to see if this is a fixed point.
                 # E.g.  O(y).subs(y, sin(x))
                 point = new.subs(var, self.point[i])
                 if point != self.point[i]:
                     from sympy.solvers.solveset import solveset
                     d = Dummy()
                     sol = solveset(old - new.subs(var, d), d)
                     res = [dict(zip((d, ), sol))]
                     point = d.subs(res[0]).limit(old, self.point[i])
                 newvars[i] = var
                 newpt[i] = point
             elif old not in syms:
                 del newvars[i], newpt[i]
                 if not syms and new == self.point[i]:
                     newvars.extend(syms)
                     newpt.extend([S.Zero]*len(syms))
             else:
                 return
         return Order(newexpr, *zip(newvars, newpt))
Example #19
0
def is_strictly_decreasing(f, interval=S.Reals, symbol=None):
    """
    Returns if a function is strictly decreasing or not, in the given
    ``Interval``.

    Examples
    ========

    >>> from sympy import is_strictly_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    """
    f = sympify(f)
    free_sym = f.free_symbols

    if symbol is None:
        if len(free_sym) > 1:
            raise NotImplementedError('is_strictly_decreasing has not yet been implemented '
                                        'for all multivariate expressions')
        elif len(free_sym) == 0:
            return False
        symbol = free_sym.pop()

    df = f.diff(symbol)
    df_neg_interval = solveset(df < 0, symbol, domain=S.Reals)
    return interval.is_subset(df_neg_interval)
Example #20
0
def singularities(expr, sym):
    """
    Finds singularities for a function.
    Currently supported functions are:
    - univariate rational(real or complex) functions

    Examples
    ========

    >>> from sympy.calculus.singularities import singularities
    >>> from sympy import Symbol, I, sqrt
    >>> x = Symbol('x', real=True)
    >>> y = Symbol('y', real=False)
    >>> singularities(x**2 + x + 1, x)
    EmptySet()
    >>> singularities(1/(x + 1), x)
    {-1}
    >>> singularities(1/(y**2 + 1), y)
    {-I, I}
    >>> singularities(1/(y**3 + 1), y)
    {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Mathematical_singularity

    """
    if not expr.is_rational_function(sym):
        raise NotImplementedError("Algorithms finding singularities for"
                                  " non rational functions are not yet"
                                  " implemented")
    else:
        return solveset(simplify(1/expr), sym)
Example #21
0
def test_solve_trig():
    from sympy.abc import n

    assert solveset_real(sin(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n), S.Integers), imageset(Lambda(n, 2 * pi * n + pi), S.Integers)
    )

    assert solveset_real(sin(x) - 1, x) == imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)

    assert solveset_real(cos(x), x) == Union(
        imageset(Lambda(n, 2 * pi * n - pi / 2), S.Integers), imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)
    )

    assert solveset_real(sin(x) + cos(x), x) == Union(
        imageset(Lambda(n, 2 * n * pi - pi / 4), S.Integers), imageset(Lambda(n, 2 * n * pi + 3 * pi / 4), S.Integers)
    )

    assert solveset_real(sin(x) ** 2 + cos(x) ** 2, x) == S.EmptySet

    assert solveset_complex(cos(x) - S.Half, x) == Union(
        imageset(Lambda(n, 2 * n * pi + pi / 3), S.Integers), imageset(Lambda(n, 2 * n * pi - pi / 3), S.Integers)
    )

    y, a = symbols("y,a")
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == Union(
        imageset(Lambda(n, 2 * n * pi), S.Integers),
        imageset(Lambda(n, -I * (I * (2 * n * pi + arg(-exp(-2 * I * y))) + 2 * im(y))), S.Integers),
    )
Example #22
0
def is_monotonic(expression, interval=S.Reals, symbol=None):
    """
    Return whether the function is monotonic in the given interval.

    Examples
    ========

    >>> from sympy import is_monotonic
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_monotonic(-x**2, S.Reals)
    False
    >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
    True

    """
    expression = sympify(expression)

    free = expression.free_symbols
    if symbol is None and len(free) > 1:
        raise NotImplementedError(
            'is_monotonic has not yet been implemented'
            ' for all multivariate expressions.'
        )

    x = symbol or (free.pop() if free else Symbol('x'))
    turning_points = solveset(expression.diff(x), x, interval)
    return interval.intersection(turning_points) is S.EmptySet
Example #23
0
def singularities(expr, sym):
    """
    Finds singularities for a function.
    Currently supported functions are:
    - univariate real rational functions

    Examples
    ========

    >>> from sympy.calculus.singularities import singularities
    >>> from sympy import Symbol
    >>> x = Symbol('x', real=True)
    >>> singularities(x**2 + x + 1, x)
    ()
    >>> singularities(1/(x + 1), x)
    (-1,)

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Mathematical_singularity

    """
    if not expr.is_rational_function(sym):
        raise NotImplementedError("Algorithms finding singularities for"
                                  " non rational functions are not yet"
                                  " implemented")
    else:
        return tuple(sorted(solveset(simplify(1/expr), sym)))
Example #24
0
def is_strictly_decreasing(f, interval=S.Reals):
    """
    Returns if a function is decreasing or not, in the given
    ``Interval``.

    Examples
    ========

    >>> from sympy import is_decreasing
    >>> from sympy.abc import x
    >>> from sympy import S, Interval, oo
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_decreasing(-x**2, Interval(-oo, 0))
    False

    """
    if len(f.free_symbols) > 1:
        raise NotImplementedError('is_strictly_decreasing has not yet been '
                                  'implemented for multivariate expressions')
    symbol = f.free_symbols.pop()
    df = f.diff(symbol)
    df_neg_interval = solveset(df < 0, symbol, domain=S.Reals)
    return interval.is_subset(df_neg_interval)
Example #25
0
def test_nfloat():
    from sympy.core.basic import _aresame
    from sympy.polys.rootoftools import rootof

    x = Symbol("x")
    eq = x**(S(4)/3) + 4*x**(S(1)/3)/3
    assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(S(1)/3))
    assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3))
    eq = x**(S(4)/3) + 4*x**(x/3)/3
    assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(x/3))
    big = 12345678901234567890
    # specify precision to match value used in nfloat
    Float_big = Float(big, 15)
    assert _aresame(nfloat(big), Float_big)
    assert _aresame(nfloat(big*x), Float_big*x)
    assert _aresame(nfloat(x**big, exponent=True), x**Float_big)
    assert nfloat({x: sqrt(2)}) == {x: nfloat(sqrt(2))}
    assert nfloat({sqrt(2): x}) == {sqrt(2): x}
    assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2)))

    # issue 6342
    f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4')
    assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139)))

    # issue 6632
    assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \
        9.99999999800000e-11

    # issue 7122
    eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0)
    assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)'
Example #26
0
def is_strictly_increasing(f, interval=S.Reals):
    """
    Returns if a function is strictly increasing or not, in the given
    ``Interval``.

    Examples
    ========

    >>> from sympy import is_strictly_increasing
    >>> from sympy.abc import x
    >>> from sympy import Interval, oo
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
    False
    >>> is_strictly_increasing(-x**2, Interval(0, oo))
    False

    """
    if len(f.free_symbols) > 1:
        raise NotImplementedError('is_strictly_increasing has not yet been '
                                  'implemented for multivariate expressions')
    symbol = f.free_symbols.pop()
    df = f.diff(symbol)
    df_pos_interval = solveset(df > 0, symbol, domain=S.Reals)
    return interval.is_subset(df_pos_interval)
Example #27
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x', real=True)
    y = exp(x+1/x**2)
    raises(NotImplementedError, lambda: solveset(y**2+y, x))

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Example #28
0
def is_monotonic(expression, interval=S.Reals, symbol=None):
    """
    Return whether the function is monotonic in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is monotonic in the given ``interval``,
        False otherwise.

    Raises
    ======

    NotImplementedError
        Monotonicity check has not been implemented for the queried function.

    Examples
    ========

    >>> from sympy import is_monotonic
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_monotonic(-x**2, S.Reals)
    False
    >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
    True

    """
    expression = sympify(expression)

    free = expression.free_symbols
    if symbol is None and len(free) > 1:
        raise NotImplementedError(
            'is_monotonic has not yet been implemented'
            ' for all multivariate expressions.'
        )

    variable = symbol or (free.pop() if free else Symbol('x'))
    turning_points = solveset(expression.diff(variable), variable, interval)
    return interval.intersection(turning_points) is S.EmptySet
Example #29
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2 * Abs(x - 3), x) == FiniteSet(1, 9)
    assert solveset_real(2 * Abs(x) - Abs(x - 1), x) == FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3, domain=S.Reals) == Interval(-1, 2)

    # issue #10069
    eq = abs(1 / (x - 1)) - 1 > 0
    u = Union(Interval.open(0, 1), Interval.open(1, 2))
    assert solveset_real(eq, x) == u
    assert solveset(eq, x, domain=S.Reals) == u

    raises(ValueError, lambda: solveset(abs(x) - 1, x))
Example #30
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x')
    y = exp(x+1/x**2)
    solution = solveset(y**2+y, x, S.Reals)
    unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals)
    assert solution == unsolved_object

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Example #31
0
def is_increasing(f, interval=S.Reals, symbol=None):
    """
    Returns if a function is increasing or not, in the given
    ``Interval``.

    Examples
    ========

    >>> from sympy import is_increasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_increasing(-x**2, Interval(-oo, 0))
    True
    >>> is_increasing(-x**2, Interval(0, oo))
    False
    >>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
    False
    >>> is_increasing(x**2 + y, Interval(1, 2), x)
    True

    """
    f = sympify(f)
    free_sym = f.free_symbols

    if symbol is None:
        if len(free_sym) > 1:
            raise NotImplementedError('is_increasing has not yet been implemented '
                                        'for all multivariate expressions')
        if len(free_sym) == 0:
            return True
        symbol = free_sym.pop()

    df = f.diff(symbol)
    df_nonneg_interval = solveset(df >= 0, symbol, domain=S.Reals)
    return interval.is_subset(df_nonneg_interval)
Example #32
0
def is_decreasing(f, interval=S.Reals, symbol=None):
    """
    Returns if a function is decreasing or not, in the given
    ``Interval``.

    Examples
    ========

    >>> from sympy import is_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    """
    f = sympify(f)
    free_sym = f.free_symbols

    if symbol is None:
        if len(free_sym) > 1:
            raise NotImplementedError('is_decreasing has not yet been implemented '
                                        'for all multivariate expressions')
        elif len(free_sym) == 0:
            return True
        symbol = free_sym.pop()

    df = f.diff(symbol)
    df_nonpos_interval = solveset(df <= 0, symbol, domain=S.Reals)
    return interval.is_subset(df_nonpos_interval)
def singularities(expression, symbol):
    """
    Find singularities of a given function.

    Currently supported functions are:
    - univariate rational (real or complex) functions

    Examples
    ========

    >>> from sympy.calculus.singularities import singularities
    >>> from sympy import Symbol, I, sqrt
    >>> x = Symbol('x', real=True)
    >>> y = Symbol('y', real=False)
    >>> singularities(x**2 + x + 1, x)
    EmptySet()
    >>> singularities(1/(x + 1), x)
    {-1}
    >>> singularities(1/(y**2 + 1), y)
    {-I, I}
    >>> singularities(1/(y**3 + 1), y)
    {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Mathematical_singularity

    """
    if not expression.is_rational_function(symbol):
        raise NotImplementedError(
            "Algorithms finding singularities for non-rational"
            " functions are not yet implemented."
        )
    else:
        return solveset(simplify(1 / expression), symbol)
Example #34
0
def test_conditonset():
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
        ConditionSet(x, True, S.Reals)

    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \
        ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)

    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \
        ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))

    assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \
        imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)

    assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \
        ConditionSet(x, x + sin(x) > 1, S.Reals)

    y, a = symbols('y,a')
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
        ConditionSet(a, Eq(-sin(y) + sin(y + a), 0), S.Reals)
Example #35
0
def test_solveset():
    x = Symbol('x')
    raises(ValueError, lambda: solveset(x + y))
    raises(ValueError, lambda: solveset(x, 1))

    assert solveset(0, domain=S.Reals) == S.Reals
    assert solveset(1) == S.EmptySet
    assert solveset(True, domain=S.Reals) == S.Reals  # issue 10197
    assert solveset(False, domain=S.Reals) == S.EmptySet

    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)

    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2 * I * pi * n),
                                               S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2 * I * pi * n),
                                                  S.Integers)
Example #36
0
def test_solve_trig_abs():
    assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == \
        Union(ImageSet(Lambda(n, n*pi + (-1)**n*pi/2), S.Naturals0),
              ImageSet(Lambda(n, -n*pi - (-1)**n*pi/2), S.Naturals0))
Example #37
0
def test_sol_zero_real():
    assert solveset_real(0, x) == S.Reals
    assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
    assert solveset_real(-x**2 - 2 * x + (x + 1)**2 - 1, x) == S.Reals
Example #38
0
def function_range(f, symbol, domain):
    """
    Finds the range of a function in a given domain.
    This method is limited by the ability to determine the singularities and
    determine limits.

    Examples
    ========

    >>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import function_range
    >>> x = Symbol('x')
    >>> function_range(sin(x), x, Interval(0, 2*pi))
    Interval(-1, 1)
    >>> function_range(tan(x), x, Interval(-pi/2, pi/2))
    Interval(-oo, oo, True, True)
    >>> function_range(1/x, x, S.Reals)
    Interval(-oo, oo, True, True)
    >>> function_range(exp(x), x, S.Reals)
    Interval(0, oo, True, True)
    >>> function_range(log(x), x, S.Reals)
    Interval(-oo, oo, True, True)
    >>> function_range(sqrt(x), x , Interval(-5, 9))
    Interval(0, 3)

    """
    from sympy.solvers.solveset import solveset

    vals = S.EmptySet
    period = periodicity(f, symbol)
    if not any(period is i for i in (None, S.Zero)):
        inf = domain.inf
        inf_period = S.Zero if inf.is_infinite else inf
        sup_period = inf_period + period
        periodic_interval = Interval(inf_period, sup_period)
        domain = domain.intersect(periodic_interval)

    intervals = continuous_domain(f, symbol, domain)
    range_int = S.EmptySet
    if isinstance(intervals, Interval):
        interval_iter = (intervals,)

    else:
        interval_iter = intervals.args

    for interval in interval_iter:
        critical_points = S.EmptySet
        critical_values = S.EmptySet
        bounds = ((interval.left_open, interval.inf, '+'),
                  (interval.right_open, interval.sup, '-'))

        for is_open, limit_point, direction in bounds:
            if is_open:
                critical_values += FiniteSet(limit(f, symbol, limit_point, direction))
                vals += critical_values

            else:
                vals += FiniteSet(f.subs(symbol, limit_point))

        critical_points += solveset(f.diff(symbol), symbol, domain)

        for critical_point in critical_points:
            vals += FiniteSet(f.subs(symbol, critical_point))

        left_open, right_open = False, False

        if critical_values is not S.EmptySet:
            if critical_values.inf == vals.inf:
                left_open = True

            if critical_values.sup == vals.sup:
                right_open = True

        range_int += Interval(vals.inf, vals.sup, left_open, right_open)

    return range_int
Example #39
0
    def _intersect(self, other):
        from sympy.solvers.diophantine import diophantine
        if self.base_set is S.Integers:
            g = None
            if isinstance(other, ImageSet) and other.base_set is S.Integers:
                g = other.lamda.expr
                m = other.lamda.variables[0]
            elif other is S.Integers:
                m = g = Dummy('x')
            if g is not None:
                f = self.lamda.expr
                n = self.lamda.variables[0]
                # Diophantine sorts the solutions according to the alphabetic
                # order of the variable names, since the result should not depend
                # on the variable name, they are replaced by the dummy variables
                # below
                a, b = Dummy('a'), Dummy('b')
                f, g = f.subs(n, a), g.subs(m, b)
                solns_set = diophantine(f - g)
                if solns_set == set():
                    return EmptySet()
                solns = list(diophantine(f - g))

                if len(solns) != 1:
                    return

                # since 'a' < 'b', select soln for n
                nsol = solns[0][0]
                t = nsol.free_symbols.pop()
                return imageset(Lambda(n, f.subs(a, nsol.subs(t, n))),
                                S.Integers)

        if other == S.Reals:
            from sympy.solvers.solveset import solveset_real
            from sympy.core.function import expand_complex
            if len(self.lamda.variables) > 1:
                return None

            f = self.lamda.expr
            n = self.lamda.variables[0]

            n_ = Dummy(n.name, real=True)
            f_ = f.subs(n, n_)

            re, im = f_.as_real_imag()
            im = expand_complex(im)

            return imageset(Lambda(n_, re),
                            self.base_set.intersect(solveset_real(im, n_)))

        elif isinstance(other, Interval):
            from sympy.solvers.solveset import (invert_real, invert_complex,
                                                solveset)

            f = self.lamda.expr
            n = self.lamda.variables[0]
            base_set = self.base_set
            new_inf, new_sup = None, None
            new_lopen, new_ropen = other.left_open, other.right_open

            if f.is_real:
                inverter = invert_real
            else:
                inverter = invert_complex

            g1, h1 = inverter(f, other.inf, n)
            g2, h2 = inverter(f, other.sup, n)

            if all(isinstance(i, FiniteSet) for i in (h1, h2)):
                if g1 == n:
                    if len(h1) == 1:
                        new_inf = h1.args[0]
                if g2 == n:
                    if len(h2) == 1:
                        new_sup = h2.args[0]
                # TODO: Design a technique to handle multiple-inverse
                # functions

                # Any of the new boundary values cannot be determined
                if any(i is None for i in (new_sup, new_inf)):
                    return

                range_set = S.EmptySet

                if all(i.is_real for i in (new_sup, new_inf)):
                    # this assumes continuity of underlying function
                    # however fixes the case when it is decreasing
                    if new_inf > new_sup:
                        new_inf, new_sup = new_sup, new_inf
                    new_interval = Interval(new_inf, new_sup, new_lopen,
                                            new_ropen)
                    range_set = base_set._intersect(new_interval)
                else:
                    if other.is_subset(S.Reals):
                        solutions = solveset(f, n, S.Reals)
                        if not isinstance(range_set, (ImageSet, ConditionSet)):
                            range_set = solutions._intersect(other)
                        else:
                            return

                if range_set is S.EmptySet:
                    return S.EmptySet
                elif isinstance(range_set,
                                Range) and range_set.size is not S.Infinity:
                    range_set = FiniteSet(*list(range_set))

                if range_set is not None:
                    return imageset(Lambda(n, f), range_set)
                return
            else:
                return
Example #40
0
def test_issue_12429():
    eq = solveset(log(x)/x<=0,x,S.Reals)
    sol = Interval(0, 1, True)
    assert eq == sol
Example #41
0
def singularities(expression, symbol):
    """
    Find singularities of a given function.

    Parameters
    ==========

    expression : Expr
        The target function in which singularities need to be found.
    symbol : Symbol
        The symbol over the values of which the singularity in
        expression in being searched for.

    Returns
    =======

    Set
        A set of values for ``symbol`` for which ``expression`` has a
        singularity. An ``EmptySet`` is returned if ``expression`` has no
        singularities for any given value of ``Symbol``.

    Raises
    ======

    NotImplementedError
        The algorithm to find singularities for irrational functions
        has not been implemented yet.

    Notes
    =====

    This function does not find non-isolated singularities
    nor does it find branch points of the expression.

    Currently supported functions are:
        - univariate rational (real or complex) functions

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Mathematical_singularity

    Examples
    ========

    >>> from sympy.calculus.singularities import singularities
    >>> from sympy import Symbol
    >>> x = Symbol('x', real=True)
    >>> y = Symbol('y', real=False)
    >>> singularities(x**2 + x + 1, x)
    EmptySet()
    >>> singularities(1/(x + 1), x)
    {-1}
    >>> singularities(1/(y**2 + 1), y)
    {-I, I}
    >>> singularities(1/(y**3 + 1), y)
    {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}

    """
    if not expression.is_rational_function(symbol):
        raise NotImplementedError(
            "Algorithms finding singularities for non-rational"
            " functions are not yet implemented."
        )
    else:
        domain = Reals if symbol.is_real else S.Complexes
        return solveset(simplify(1 / expression), symbol, domain)
Example #42
0
def intersection_sets(self, other):  # noqa:F811
    from sympy.solvers.diophantine import diophantine

    # Only handle the straight-forward univariate case
    if (len(self.lamda.variables) > 1
            or self.lamda.signature != self.lamda.variables):
        return None
    base_set = self.base_sets[0]

    # Intersection between ImageSets with Integers as base set
    # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
    # diophantine equations f(n)=g(m).
    # If the solutions for n are {h(t) : t in Integers} then we return
    # {f(h(t)) : t in integers}.
    # If the solutions for n are {n_1, n_2, ..., n_k} then we return
    # {f(n_i) : 1 <= i <= k}.
    if base_set is S.Integers:
        gm = None
        if isinstance(other, ImageSet) and other.base_sets == (S.Integers, ):
            gm = other.lamda.expr
            var = other.lamda.variables[0]
            # Symbol of second ImageSet lambda must be distinct from first
            m = Dummy('m')
            gm = gm.subs(var, m)
        elif other is S.Integers:
            m = gm = Dummy('m')
        if gm is not None:
            fn = self.lamda.expr
            n = self.lamda.variables[0]
            try:
                solns = list(diophantine(fn - gm, syms=(n, m), permute=True))
            except (TypeError, NotImplementedError):
                # TypeError if equation not polynomial with rational coeff.
                # NotImplementedError if correct format but no solver.
                return
            # 3 cases are possible for solns:
            # - empty set,
            # - one or more parametric (infinite) solutions,
            # - a finite number of (non-parametric) solution couples.
            # Among those, there is one type of solution set that is
            # not helpful here: multiple parametric solutions.
            if len(solns) == 0:
                return EmptySet
            elif any(not isinstance(s, int) and s.free_symbols
                     for tupl in solns for s in tupl):
                if len(solns) == 1:
                    soln, solm = solns[0]
                    (t, ) = soln.free_symbols
                    expr = fn.subs(n, soln.subs(t, n)).expand()
                    return imageset(Lambda(n, expr), S.Integers)
                else:
                    return
            else:
                return FiniteSet(*(fn.subs(n, s[0]) for s in solns))

    if other == S.Reals:
        from sympy.solvers.solveset import solveset_real
        from sympy.core.function import expand_complex

        f = self.lamda.expr
        n = self.lamda.variables[0]

        n_ = Dummy(n.name, real=True)
        f_ = f.subs(n, n_)

        re, im = f_.as_real_imag()
        im = expand_complex(im)

        re = re.subs(n_, n)
        im = im.subs(n_, n)
        ifree = im.free_symbols
        lam = Lambda(n, re)
        if not im:
            # allow re-evaluation
            # of self in this case to make
            # the result canonical
            pass
        elif im.is_zero is False:
            return S.EmptySet
        elif ifree != {n}:
            return None
        else:
            # univarite imaginary part in same variable
            base_set = base_set.intersect(solveset_real(im, n))
        return imageset(lam, base_set)

    elif isinstance(other, Interval):
        from sympy.solvers.solveset import (invert_real, invert_complex,
                                            solveset)

        f = self.lamda.expr
        n = self.lamda.variables[0]
        new_inf, new_sup = None, None
        new_lopen, new_ropen = other.left_open, other.right_open

        if f.is_real:
            inverter = invert_real
        else:
            inverter = invert_complex

        g1, h1 = inverter(f, other.inf, n)
        g2, h2 = inverter(f, other.sup, n)

        if all(isinstance(i, FiniteSet) for i in (h1, h2)):
            if g1 == n:
                if len(h1) == 1:
                    new_inf = h1.args[0]
            if g2 == n:
                if len(h2) == 1:
                    new_sup = h2.args[0]
            # TODO: Design a technique to handle multiple-inverse
            # functions

            # Any of the new boundary values cannot be determined
            if any(i is None for i in (new_sup, new_inf)):
                return

            range_set = S.EmptySet

            if all(i.is_real for i in (new_sup, new_inf)):
                # this assumes continuity of underlying function
                # however fixes the case when it is decreasing
                if new_inf > new_sup:
                    new_inf, new_sup = new_sup, new_inf
                new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
                range_set = base_set.intersect(new_interval)
            else:
                if other.is_subset(S.Reals):
                    solutions = solveset(f, n, S.Reals)
                    if not isinstance(range_set, (ImageSet, ConditionSet)):
                        range_set = solutions.intersect(other)
                    else:
                        return

            if range_set is S.EmptySet:
                return S.EmptySet
            elif isinstance(range_set,
                            Range) and range_set.size is not S.Infinity:
                range_set = FiniteSet(*list(range_set))

            if range_set is not None:
                return imageset(Lambda(n, f), range_set)
            return
        else:
            return
Example #43
0
def test_issue_9913():
    assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
        FiniteSet(-(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)/3 - 100/
                (3*(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)) + S(20)/3)
Example #44
0
def test_issue_9849():
    assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
Example #45
0
def test_issue_failing_pow():
    assert solveset(x**(S(3) / 2) + 4, x, S.Reals) == S.EmptySet
Example #46
0
def test_issue_9778():
    assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
    assert solveset(x**(S(3) / 5) + 1, x, S.Reals) == S.EmptySet
    assert solveset(x**3 + y, x, S.Reals) == Intersection(Interval(-oo, oo), \
        FiniteSet((-y)**(S(1)/3)*Piecewise((1, Ne(-im(y), 0)), ((-1)**(S(2)/3), -y < 0), (1, True))))
Example #47
0
def given(expr, condition=None, **kwargs):
    r""" Conditional Random Expression
    From a random expression and a condition on that expression creates a new
    probability space from the condition and returns the same expression on that
    conditional probability space.

    Examples
    ========

    >>> from sympy.stats import given, density, Die
    >>> X = Die('X', 6)
    >>> Y = given(X, X > 3)
    >>> density(Y).dict
    {4: 1/3, 5: 1/3, 6: 1/3}

    Following convention, if the condition is a random symbol then that symbol
    is considered fixed.

    >>> from sympy.stats import Normal
    >>> from sympy import pprint
    >>> from sympy.abc import z

    >>> X = Normal('X', 0, 1)
    >>> Y = Normal('Y', 0, 1)
    >>> pprint(density(X + Y, Y)(z), use_unicode=False)
                    2
           -(-Y + z)
           -----------
      ___       2
    \/ 2 *e
    ------------------
             ____
         2*\/ pi
    """

    if not is_random(condition) or pspace_independent(expr, condition):
        return expr

    if isinstance(condition, RandomSymbol):
        condition = Eq(condition, condition.symbol)

    condsymbols = random_symbols(condition)
    if (isinstance(condition, Equality) and len(condsymbols) == 1
            and not isinstance(pspace(expr).domain, ConditionalDomain)):
        rv = tuple(condsymbols)[0]

        results = solveset(condition, rv)
        if isinstance(results, Intersection) and S.Reals in results.args:
            results = list(results.args[1])

        sums = 0
        for res in results:
            temp = expr.subs(rv, res)
            if temp == True:
                return True
            if temp != False:
                # XXX: This seems nonsensical but preserves existing behaviour
                # after the change that Relational is no longer a subclass of
                # Expr. Here expr is sometimes Relational and sometimes Expr
                # but we are trying to add them with +=. This needs to be
                # fixed somehow.
                if sums == 0 and isinstance(expr, Relational):
                    sums = expr.subs(rv, res)
                else:
                    sums += expr.subs(rv, res)
        if sums == 0:
            return False
        return sums

    # Get full probability space of both the expression and the condition
    fullspace = pspace(Tuple(expr, condition))
    # Build new space given the condition
    space = fullspace.conditional_space(condition, **kwargs)
    # Dictionary to swap out RandomSymbols in expr with new RandomSymbols
    # That point to the new conditional space
    swapdict = rs_swap(fullspace.values, space.values)
    # Swap random variables in the expression
    expr = expr.xreplace(swapdict)
    return expr
Example #48
0
def test_conditionset_equality():
    ''' Checking equality of different representations of ConditionSet'''
    assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y),
                                                      S.Complexes)
Example #49
0
def test_solveset_domain():
    x = Symbol('x')

    assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
    assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
    assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
Example #50
0
def test_nfloat():
    from sympy.core.basic import _aresame
    from sympy.polys.rootoftools import rootof

    x = Symbol("x")
    eq = x**Rational(4, 3) + 4 * x**(S.One / 3) / 3
    assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0 / 3) * x**(S.One / 3))
    assert _aresame(nfloat(eq, exponent=True),
                    x**(4.0 / 3) + (4.0 / 3) * x**(1.0 / 3))
    eq = x**Rational(4, 3) + 4 * x**(x / 3) / 3
    assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0 / 3) * x**(x / 3))
    big = 12345678901234567890
    # specify precision to match value used in nfloat
    Float_big = Float(big, 15)
    assert _aresame(nfloat(big), Float_big)
    assert _aresame(nfloat(big * x), Float_big * x)
    assert _aresame(nfloat(x**big, exponent=True), x**Float_big)
    assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2)))

    # issue 6342
    f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4')
    assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139)))

    # issue 6632
    assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \
        9.99999999800000e-11

    # issue 7122
    eq = cos(3 * x**4 + y) * rootof(x**5 + 3 * x**3 + 1, 0)
    assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)'

    # issue 10933
    for ti in (dict, Dict):
        d = ti({S.Half: S.Half})
        n = nfloat(d)
        assert isinstance(n, ti)
        assert _aresame(list(n.items()).pop(), (S.Half, Float(.5)))
    for ti in (dict, Dict):
        d = ti({S.Half: S.Half})
        n = nfloat(d, dkeys=True)
        assert isinstance(n, ti)
        assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5)))
    d = [S.Half]
    n = nfloat(d)
    assert type(n) is list
    assert _aresame(n[0], Float(.5))
    assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5))
    assert _aresame(nfloat(S(True)), S(True))
    assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5))
    assert nfloat(Eq((3 - I)**2 / 2 + I, 0)) == S.false
    # pass along kwargs
    assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}]

    # Issue 17706
    A = MutableMatrix([[1, 2], [3, 4]])
    B = MutableMatrix(
        [[Float('1.0', precision=53),
          Float('2.0', precision=53)],
         [Float('3.0', precision=53),
          Float('4.0', precision=53)]])
    assert _aresame(nfloat(A), B)
    A = ImmutableMatrix([[1, 2], [3, 4]])
    B = ImmutableMatrix(
        [[Float('1.0', precision=53),
          Float('2.0', precision=53)],
         [Float('3.0', precision=53),
          Float('4.0', precision=53)]])
    assert _aresame(nfloat(A), B)
Example #51
0
def intersection_sets(self, other):
    from sympy.solvers.diophantine import diophantine

    # Only handle the straight-forward univariate case
    if (len(self.lamda.variables) > 1
            or self.lamda.signature != self.lamda.variables):
        return None
    base_set = self.base_sets[0]

    # Intersection between ImageSets with Integers as base set
    # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
    # diophantine equations f(n)=g(m).
    # If the solutions for n are {h(t) : t in Integers} then we return
    # {f(h(t)) : t in integers}.
    if base_set is S.Integers:
        gm = None
        if isinstance(other, ImageSet) and other.base_sets == (S.Integers, ):
            gm = other.lamda.expr
            m = other.lamda.variables[0]
        elif other is S.Integers:
            m = gm = Dummy('x')
        if gm is not None:
            fn = self.lamda.expr
            n = self.lamda.variables[0]
            solns = list(diophantine(fn - gm, syms=(n, m)))
            if len(solns) == 0:
                return EmptySet
            elif len(solns) != 1:
                return
            else:
                soln, solm = solns[0]
                (t, ) = soln.free_symbols
                expr = fn.subs(n, soln.subs(t, n))
                return imageset(Lambda(n, expr), S.Integers)

    if other == S.Reals:
        from sympy.solvers.solveset import solveset_real
        from sympy.core.function import expand_complex

        f = self.lamda.expr
        n = self.lamda.variables[0]

        n_ = Dummy(n.name, real=True)
        f_ = f.subs(n, n_)

        re, im = f_.as_real_imag()
        im = expand_complex(im)

        re = re.subs(n_, n)
        im = im.subs(n_, n)
        ifree = im.free_symbols
        lam = Lambda(n, re)
        if not im:
            # allow re-evaluation
            # of self in this case to make
            # the result canonical
            pass
        elif im.is_zero is False:
            return S.EmptySet
        elif ifree != {n}:
            return None
        else:
            # univarite imaginary part in same variable
            base_set = base_set.intersect(solveset_real(im, n))
        return imageset(lam, base_set)

    elif isinstance(other, Interval):
        from sympy.solvers.solveset import (invert_real, invert_complex,
                                            solveset)

        f = self.lamda.expr
        n = self.lamda.variables[0]
        new_inf, new_sup = None, None
        new_lopen, new_ropen = other.left_open, other.right_open

        if f.is_real:
            inverter = invert_real
        else:
            inverter = invert_complex

        g1, h1 = inverter(f, other.inf, n)
        g2, h2 = inverter(f, other.sup, n)

        if all(isinstance(i, FiniteSet) for i in (h1, h2)):
            if g1 == n:
                if len(h1) == 1:
                    new_inf = h1.args[0]
            if g2 == n:
                if len(h2) == 1:
                    new_sup = h2.args[0]
            # TODO: Design a technique to handle multiple-inverse
            # functions

            # Any of the new boundary values cannot be determined
            if any(i is None for i in (new_sup, new_inf)):
                return

            range_set = S.EmptySet

            if all(i.is_real for i in (new_sup, new_inf)):
                # this assumes continuity of underlying function
                # however fixes the case when it is decreasing
                if new_inf > new_sup:
                    new_inf, new_sup = new_sup, new_inf
                new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
                range_set = base_set.intersect(new_interval)
            else:
                if other.is_subset(S.Reals):
                    solutions = solveset(f, n, S.Reals)
                    if not isinstance(range_set, (ImageSet, ConditionSet)):
                        range_set = solutions.intersect(other)
                    else:
                        return

            if range_set is S.EmptySet:
                return S.EmptySet
            elif isinstance(range_set,
                            Range) and range_set.size is not S.Infinity:
                range_set = FiniteSet(*list(range_set))

            if range_set is not None:
                return imageset(Lambda(n, f), range_set)
            return
        else:
            return
Example #52
0
def test_issue_10671_12466():
    assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
    i = Interval(1, 10)
    assert solveset((1 / x).diff(x) < 0, x, i) == i
    assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
        Interval.Lopen(6, 7)
Example #53
0
def test_issue_8715():
    eq = x + 1 / x > -2 + 1 / x
    assert solveset(eq, x, S.Reals) == \
        (Interval.open(-2, oo) - FiniteSet(0))
    assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
        Interval.open(exp(-2), oo) - FiniteSet(1)
Example #54
0
def test_invert_real():
    x = Symbol('x', real=True)
    y = Symbol('y')
    n = Symbol('n')

    def ireal(x, s=S.Reals):
        return Intersection(s, x)

    minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n))
    plus_n = Intersection(Interval(0, oo), FiniteSet(n))
    assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n)

    assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))

    y = Symbol('y', positive=True)
    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x * 3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3 * x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
    assert invert_real(exp(x) * 3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3 * x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y))
    plus_y = Intersection(Interval(0, oo), FiniteSet(y))
    assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y) / log(2)))
    assert invert_real(2**exp(x), y,
                       x) == (x, ireal(FiniteSet(log(log(y) / log(2)))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1))
    y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1))
    assert invert_real(Abs(x**31 + x + 1), y,
                       x) == (x**31 + x, Union(y_1, y_2))

    assert invert_real(sin(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))

    assert invert_real(sin(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))

    assert invert_real(csc(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))

    assert invert_real(csc(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))

    assert invert_real(cos(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))

    assert invert_real(cos(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))

    assert invert_real(sec(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))

    assert invert_real(sec(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))

    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1 / pi)))

    # Test for ``set_h`` containing information about the domain

    n = Dummy('n')
    x = Symbol('x')

    h1 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(0, oo)))

    h2 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(0, oo)))

    assert invert_real(Abs(Abs(x + 3) - a) - b, 0, x) == (x, Union(h1, h2))
Example #55
0
def test_issue_10397():
    assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
Example #56
0
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function
    is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Examples
    ========

    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    Union(Interval(0, pi/2, False, True), Interval(pi/2, pi, True))
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    Interval(2, 5)
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    Interval(1/2, oo, True, True)

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denom == 2:
                constraint = solve_univariate_inequality(atom.base >= 0,
                                                         symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        if f.has(Abs):
            sings = solveset(1/f, symbol, domain)
        else:
            for atom in f.atoms(Pow):
                predicate, denom = _has_rational_power(atom, symbol)
                if predicate and denom == 2:
                    sings = solveset(1/f, symbol, domain)
                    break
            else:
                sings = Intersection(solveset(1/f, symbol), domain)


    except:
        raise NotImplementedError("Methods for determining the continuous domains"
                                  " of this function have not been developed.")

    return domain - sings
    def is_convergent(self):
        r"""Checks for the convergence of a Sum.

        We divide the study of convergence of infinite sums and products in
        two parts.

        First Part:
        One part is the question whether all the terms are well defined, i.e.,
        they are finite in a sum and also non-zero in a product. Zero
        is the analogy of (minus) infinity in products as
        :math:`e^{-\infty} = 0`.

        Second Part:
        The second part is the question of convergence after infinities,
        and zeros in products, have been omitted assuming that their number
        is finite. This means that we only consider the tail of the sum or
        product, starting from some point after which all terms are well
        defined.

        For example, in a sum of the form:

        .. math::

            \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}

        where a and b are numbers. The routine will return true, even if there
        are infinities in the term sequence (at most two). An analogous
        product would be:

        .. math::

            \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}

        This is how convergence is interpreted. It is concerned with what
        happens at the limit. Finding the bad terms is another independent
        matter.

        Note: It is responsibility of user to see that the sum or product
        is well defined.

        There are various tests employed to check the convergence like
        divergence test, root test, integral test, alternating series test,
        comparison tests, Dirichlet tests. It returns true if Sum is convergent
        and false if divergent and NotImplementedError if it can not be checked.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolutely_convergent()
        Product.is_convergent()
        """
        from sympy import Interval, Integral, log, symbols, simplify
        p, q, r = symbols('p q r', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError("convergence checking for more than one symbol "
                                      "containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity
        # and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        sym_ = Dummy(sym.name, integer=True, positive=True)
        sequence_term = sequence_term.xreplace({sym: sym_})
        sym = sym_

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func, cond in sequence_term.args:
                # see if it represents something going to oo
                if cond == True or cond.as_set().sup is S.Infinity:
                    s = Sum(func, (sym, lower_limit, upper_limit))
                    return s.is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
            lim_val = limit_seq(sequence_term, sym)
            if lim_val is not None and lim_val.is_zero is False:
                return S.false
        except NotImplementedError:
            pass

        try:
            lim_val_abs = limit_seq(abs(sequence_term), sym)
            if lim_val_abs is not None and lim_val_abs.is_zero is False:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] >= -1:
                return S.false

        p2_series_test = order.expr.match((1/sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] <= 1:
                return S.false

        ### ------------- comparison test ------------- ###
        # 1/(n**p*log(n)**q*log(log(n))**r) comparison
        n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r))
        if n_log_test is not None:
            if (n_log_test[p] > 1 or
                (n_log_test[p] == 1 and n_log_test[q] > 1) or
                (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
                    return S.true
            return S.false

        ### ------------- Limit comparison test -----------###
        # (1/n) comparison
        try:
            lim_comp = limit_seq(sym*sequence_term, sym)
            if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
                return S.false
        except NotImplementedError:
            pass

        ### ----------- ratio test ---------------- ###
        next_sequence_term = sequence_term.xreplace({sym: sym + 1})
        ratio = combsimp(powsimp(next_sequence_term/sequence_term))
        try:
            lim_ratio = limit_seq(ratio, sym)
            if lim_ratio is not None and lim_ratio.is_number:
                if abs(lim_ratio) > 1:
                    return S.false
                if abs(lim_ratio) < 1:
                    return S.true
        except NotImplementedError:
            pass

        ### ----------- root test ---------------- ###
        # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        try:
            lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
            if lim_evaluated is not None and lim_evaluated.is_number:
                if lim_evaluated < 1:
                    return S.true
                if lim_evaluated > 1:
                    return S.false
        except NotImplementedError:
            pass

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match((-1)**(sym + p)*q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true


        ### ------------- integral test -------------- ###
        check_interval = None
        maxima = solveset(sequence_term.diff(sym), sym, interval)
        if not maxima:
            check_interval = interval
        elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
            check_interval = Interval(maxima.sup, interval.sup)
        if (check_interval is not None and
            (is_decreasing(sequence_term, check_interval) or
            is_decreasing(-sequence_term, check_interval))):
                integral_val = Integral(
                    sequence_term, (sym, lower_limit, upper_limit))
                try:
                    integral_val_evaluated = integral_val.doit()
                    if integral_val_evaluated.is_number:
                        return S(integral_val_evaluated.is_finite)
                except NotImplementedError:
                    pass

        ### ----- Dirichlet and bounded times convergent tests ----- ###
        # TODO
        #
        # Dirichlet_test
        # https://en.wikipedia.org/wiki/Dirichlet%27s_test
        #
        # Bounded times convergent test
        # It is based on comparison theorems for series.
        # In particular, if the general term of a series can
        # be written as a product of two terms a_n and b_n
        # and if a_n is bounded and if Sum(b_n) is absolutely
        # convergent, then the original series Sum(a_n * b_n)
        # is absolutely convergent and so convergent.
        #
        # The following code can grows like 2**n where n is the
        # number of args in order.expr
        # Possibly combined with the potentially slow checks
        # inside the loop, could make this test extremely slow
        # for larger summation expressions.

        if order.expr.is_Mul:
            args = order.expr.args
            argset = set(args)

            ### -------------- Dirichlet tests -------------- ###
            m = Dummy('m', integer=True)
            def _dirichlet_test(g_n):
                try:
                    ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
                    if ing_val is not None and ing_val.is_finite:
                        return S.true
                except NotImplementedError:
                    pass

            ### -------- bounded times convergent test ---------###
            def _bounded_convergent_test(g1_n, g2_n):
                try:
                    lim_val = limit_seq(g1_n, sym)
                    if lim_val is not None and (lim_val.is_finite or (
                        isinstance(lim_val, AccumulationBounds)
                        and (lim_val.max - lim_val.min).is_finite)):
                            if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
                                return S.true
                except NotImplementedError:
                    pass

            for n in range(1, len(argset)):
                for a_tuple in itertools.combinations(args, n):
                    b_set = argset - set(a_tuple)
                    a_n = Mul(*a_tuple)
                    b_n = Mul(*b_set)

                    if is_decreasing(a_n, interval):
                        dirich = _dirichlet_test(b_n)
                        if dirich is not None:
                            return dirich

                    bc_test = _bounded_convergent_test(a_n, b_n)
                    if bc_test is not None:
                        return bc_test

        _sym = self.limits[0][0]
        sequence_term = sequence_term.xreplace({sym: _sym})
        raise NotImplementedError("The algorithm to find the Sum convergence of %s "
                                  "is not yet implemented" % (sequence_term))
Example #58
0
def test_simplification():
    eq = x + (a - b) / (-2 * a + 2 * b)
    assert solveset(eq, x) == FiniteSet(S.Half)
    assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
Example #59
0
def solve_univariate_inequality(expr,
                                gen,
                                relational=True,
                                domain=S.Reals,
                                continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy import im
    from sympy.calculus.util import (continuous_domain, periodicity,
                                     function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify, solveset
    from sympy.solvers.solvers import solve

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_real is None:
        gen = Dummy('gen', real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(
                filldedent('''
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                '''))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is S.Zero:
            e = expand_mul(e)
            const = expr.func(e, 0)
            if const is S.true:
                rv = domain
            elif const is S.false:
                rv = S.EmptySet
        elif period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                # replace gen with generic x since it's
                # univariate anyway
                raise NotImplementedError(
                    filldedent('''
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    ''' % expr.subs(gen, Symbol('x'))))

            expanded_e = expand_mul(e)

            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, expand_mul(x))
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        'relationship did not evaluate: %s' % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(expanded_e, gen, domain)

            include_x = '=' in expr.rel_op and expr.rel_op != '!='

            try:
                discontinuities = set(domain.boundary -
                                      FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(
                    *(solns + singularities +
                      list(discontinuities))).intersection(
                          Interval(domain.inf, domain.sup, domain.inf
                                   not in domain, domain.sup not in domain))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    from sympy.utilities.iterables import sift
                    sifted = sift(critical_points, lambda x: x.is_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = list(sorted(reals))
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError(
                    'sorting of these roots is not supported')

            # If expr contains imaginary coefficients, only take real
            # values of x for which the imaginary part is 0
            make_real = S.Reals
            if im(expanded_e) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(im(expanded_e), gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if z not in singularities and valid(
                                    z) and z.is_real:
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if pt not in singularities and pt.is_real and valid(
                                        pt):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if isinstance(im_sol, EmptySet):
                    raise ValueError(
                        filldedent('''
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        ''' % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            empty = sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if im(expanded_e) != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection((Union(*sol_sets)), make_real,
                                  _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Example #60
0
def test_issue_10555():
    f = Function('f')
    assert solveset(f(x) - pi/2, x, S.Reals) == \
        ConditionSet(x, Eq(2*f(x) - pi, 0), S.Reals)