def test_binomial_quantile(): X = Binomial('X', 50, S.Half) assert quantile(X)(0.95) == S(31) X = Binomial('X', 5, S.Half) p = Symbol("p", positive=True) assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\ (S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\ (S(4), p <= Rational(31, 32)), (S(5), p <= S.One))
def test_binomial_quantile(): X = Binomial('X', 50, S.Half) assert quantile(X)(0.95) == S(31) X = Binomial('X', 5, S(1) / 2) p = Symbol("p", positive=True) assert quantile(X)(p) == Piecewise((nan, p > S(1)), (S(0), p <= S(1)/32),\ (S(1), p <= S(3)/16), (S(2), p <= S(1)/2), (S(3), p <= S(13)/16),\ (S(4), p <= S(31)/32), (S(5), p <= S(1)))
def test_binomial_quantile(): X = Binomial('X', 50, S.Half) assert quantile(X)(0.95) == S(31) X = Binomial('X', 5, S(1)/2) p = Symbol("p", positive=True) assert quantile(X)(p) == Piecewise((nan, p > S(1)), (S(0), p <= S(1)/32),\ (S(1), p <= S(3)/16), (S(2), p <= S(1)/2), (S(3), p <= S(13)/16),\ (S(4), p <= S(31)/32), (S(5), p <= S(1)))
def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True, finite=True) assert E(X) == 1 / rate assert variance(X) == 1 / rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2 * X, 4) == smoment(X, 4) assert moment(X, 3) == 3 * 2 * 1 / rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10 * rate) assert quantile(X)(p) == -log(1 - p) / rate assert where(X <= 1).set == Interval(0, 1) #Test issue 9970 z = Dummy('z') assert P(X > z) == exp(-z * rate) assert P(X < z) == 0 #Test issue 10076 (Distribution with interval(0,oo)) x = Symbol('x') _z = Dummy('_z') b = SingleContinuousPSpace(x, ExponentialDistribution(2)) expected1 = Integral(2 * exp(-2 * _z), (_z, 3, oo)) assert b.probability(x > 3, evaluate=False).dummy_eq(expected1) is True expected2 = Integral(2 * exp(-2 * _z), (_z, 0, 4)) assert b.probability(x < 4, evaluate=False).dummy_eq(expected2) is True
def test_loglogistic(): a, b = symbols('a b') assert LogLogistic('x', a, b) a = Symbol('a', negative=True) b = Symbol('b', positive=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a = Symbol('a', positive=True) b = Symbol('b', negative=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a, b, z, p = symbols('a b z p', positive=True) X = LogLogistic('x', a, b) assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2) assert cdf(X)(z) == 1/(1 + (z/a)**(-b)) assert quantile(X)(p) == a*(p/(1 - p))**(1/b) # Expectation assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) b = symbols('b', prime=True) # b > 1 X = LogLogistic('x', a, b) assert E(X) == pi*a/(b*sin(pi/b)) X = LogLogistic('x', 1, 2) assert median(X) == FiniteSet(1)
def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}) p = Symbol("p", positive=True) assert dict(density(F).items()) == { S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4) } assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= Rational(3, 4)),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) assert F.pspace.domain.set == FiniteSet(1, 2, 3) raises(ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: S.Half, 3: S.Half })) raises(ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: Rational(-1, 2), 3: S.One })) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\ 4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}))
def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: S.One / 4, 3: S.One / 4}) p = Symbol("p", positive=True) assert dict(density(F).items()) == { S(1): S.Half, S(2): S.One / 4, S(3): S.One / 4 } assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= S(3)/4),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) raises(ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: S.Half, 3: S.Half })) raises(ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: S(-1) / 2, 3: S.One })) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: S(3)/2, 3: S.Zero,\ 4: S(-1)/2, 5: S(-3)/4, 6: S(-1)/4}))
def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2 * X + Y, -X) == -2 * variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert kurtosis(X) == 3 assert kurtosis(X + Y) == 3 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X * X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2) * erfinv(2 * p - S.One)
def test_bernoulli(): p, a, b, t = symbols("p a b t") X = Bernoulli("B", p, a, b) assert E(X) == a * p + b * (-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)( t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)( t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli("B", p, 1, 0) z = Symbol("z") assert E(X) == p assert simplify(variance(X)) == p * (1 - p) assert E(a * X + b) == a * E(X) + b assert simplify(variance(a * X + b)) == simplify(a**2 * variance(X)) assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1)) raises(ValueError, lambda: Bernoulli("B", 1.5)) raises(ValueError, lambda: Bernoulli("B", -0.5)) # issue 8248 assert X.pspace.compute_expectation(1) == 1
def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S(1) + 1/p)
def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == S(35) / 12 assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a * X + b) == a * E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4 * X, 3) == 64 * cmoment(X, 3) assert covariance(X, Y) == S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2 * X > 6) == S.Half assert P(X > Y) == S(5) / 12 assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2 * X) assert moment(X, 0) == 1 assert moment(5 * X, 2) == 25 * moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\ (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\ (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One)) assert P(X > 3, X > 3) == S.One assert P(X > Y, Eq(Y, 6)) == S.Zero assert P(Eq(X + Y, 12)) == S.One / 36 assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One / 6 assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2 * X + Y**Z) assert d[S(22)] == S.One / 108 and d[S(4100)] == S.One / 216 and S( 3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp( 5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp( 2 * I * t) / 6 + exp(I * t) / 6 assert moment_generating_function(X)( t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp( 3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6
def test_cauchy(): x0 = Symbol("x0") gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) assert density(X)(x) == 1 / (pi * gamma * (1 + (x - x0)**2 / gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma * tan(pi * (p - S.Half)) + x0 gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_cauchy(): x0 = Symbol("x0") gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0 gamma = Symbol("gamma", positive=False) raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == S(35)/12 assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a*X + b) == a*E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4*X, 3) == 64*cmoment(X, 3) assert covariance(X, Y) == S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2*X > 6) == S.Half assert P(X > Y) == S(5)/12 assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2*X) assert moment(X, 0) == 1 assert moment(5*X, 2) == 25*moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\ (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\ (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One)) assert P(X > 3, X > 3) == S.One assert P(X > Y, Eq(Y, 6)) == S.Zero assert P(Eq(X + Y, 12)) == S.One/36 assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One/6 assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2*X + Y**Z) assert d[S(22)] == S.One/108 and d[S(4100)] == S.One/216 and S(3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6 assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) #Tests characteristics_function assert characteristic_function(X)(x) == \ (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True))) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
def test_cauchy(): x0 = Symbol("x0") gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) # Tests the characteristic function assert characteristic_function(X)(x) == exp(-gamma * Abs(x) + I * x * x0) assert density(X)(x) == 1 / (pi * gamma * (1 + (x - x0)**2 / gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma * tan(pi * (p - S.Half)) + x0 gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_single_normal(): mu = Symbol('mu', real=True, finite=True) sigma = Symbol('sigma', real=True, positive=True, finite=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert simplify(E(Y)) == mu assert simplify(variance(Y)) == sigma**2 pdf = density(Y) x = Symbol('x') assert (pdf(x) == 2**S.Half*exp(-(mu - x)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1)))) assert E(X, Eq(X, mu)) == mu
def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert E(Y) == mu assert variance(Y) == sigma**2 pdf = density(Y) x = Symbol('x', real=True) assert (pdf(x) == 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1)))) assert E(X, Eq(X, mu)) == mu
def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: S.One/4, 3: S.One/4}) p = Symbol("p", positive=True) assert dict(density(F).items()) == {S(1): S.Half, S(2): S.One/4, S(3): S.One/4} assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= S(3)/4),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half})) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S(-1)/2, 3: S.One})) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: S(3)/2, 3: S.Zero,\ 4: S(-1)/2, 5: S(-3)/4, 6: S(-1)/4}))
def test_exponential(): rate = Symbol('lambda', positive=True, real=True, finite=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True,finite=True) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) == S(1) assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert quantile(X)(p) == -log(1-p)/rate assert where(X <= 1).set == Interval(0, 1)
def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True, finite=True) assert E(X) == 1 / rate assert variance(X) == 1 / rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert smoment(2 * X, 4) == smoment(X, 4) assert moment(X, 3) == 3 * 2 * 1 / rate**3 assert P(X > 0) == S(1) assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10 * rate) assert quantile(X)(p) == -log(1 - p) / rate assert where(X <= 1).set == Interval(0, 1)
def test_FiniteRV(): F = FiniteRV('F', { 1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4) }, check=True) p = Symbol("p", positive=True) assert dict(density(F).items()) == { S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4) } assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= Rational(3, 4)),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) assert F.pspace.domain.set == FiniteSet(1, 2, 3) raises( ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: S.Half, 3: S.Half }, check=True)) raises( ValueError, lambda: FiniteRV('F', { 1: S.Half, 2: Rational(-1, 2), 3: S.One }, check=True)) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\ 4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = FiniteRV('X', {1: 1, 2: 2}) assert E(X) == 5 assert P(X <= 2) + P(X > 2) != 1
def test_bernoulli(): p, a, b, t = symbols('p a b t') X = Bernoulli('B', p, a, b) assert E(X) == a*p + b*(-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli('B', p, 1, 0) z = Symbol("z") assert E(X) == p assert simplify(variance(X)) == p*(1 - p) assert E(a*X + b) == a*E(X) + b assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X)) assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1)) raises(ValueError, lambda: Bernoulli('B', 1.5)) raises(ValueError, lambda: Bernoulli('B', -0.5))
def test_bernoulli(): p, a, b, t = symbols('p a b t') X = Bernoulli('B', p, a, b) assert E(X) == a * p + b * (-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)( t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)( t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli('B', p, 1, 0) z = Symbol("z") assert E(X) == p assert simplify(variance(X)) == p * (1 - p) assert E(a * X + b) == a * E(X) + b assert simplify(variance(a * X + b)) == simplify(a**2 * variance(X)) assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1)) Y = Bernoulli('Y', Rational(1, 2)) assert median(Y) == FiniteSet(0, 1) Z = Bernoulli('Z', Rational(2, 3)) assert median(Z) == FiniteSet(1) raises(ValueError, lambda: Bernoulli('B', 1.5)) raises(ValueError, lambda: Bernoulli('B', -0.5)) #issue 8248 assert X.pspace.compute_expectation(1) == 1 p = Rational(1, 5) X = Binomial('X', 5, p) Y = Binomial('Y', 7, 2 * p) Z = Binomial('Z', 9, 3 * p) assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0 assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \ sqrt(1529)*Rational(12, 16819) assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \ == -sqrt(357451121)*Rational(2812, 4646864573)
def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == S(35) / 12 assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a * X + b) == a * E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4 * X, 3) == 64 * cmoment(X, 3) assert covariance(X, Y) == S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2 * X > 6) == S.Half assert P(X > Y) == S(5) / 12 assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2 * X) assert moment(X, 0) == 1 assert moment(5 * X, 2) == 25 * moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\ (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\ (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One)) assert P(X > 3, X > 3) == S.One assert P(X > Y, Eq(Y, 6)) == S.Zero assert P(Eq(X + Y, 12)) == S.One / 36 assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One / 6 assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2 * X + Y**Z) assert d[S(22)] == S.One / 108 and d[S(4100)] == S.One / 216 and S( 3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp( 5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp( 2 * I * t) / 6 + exp(I * t) / 6 assert moment_generating_function(X)( t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp( 3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6 # Bayes test for die BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) # arg test for die raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. # symbolic test for die n, k = symbols('n, k', positive=True) D = Die('D', n) dens = density(D).dict assert dens == Density(DieDistribution(n)) assert set(dens.subs(n, 4).doit().keys()) == set([1, 2, 3, 4]) assert set(dens.subs(n, 4).doit().values()) == set([S(1) / 4]) k = Dummy('k', integer=True) assert E(D).dummy_eq(Sum(Piecewise((k / n, k <= n), (0, True)), (k, 1, n))) assert variance(D).subs(n, 6).doit() == S(35) / 12 ki = Dummy('ki') cumuf = cdf(D)(k) assert cumuf.dummy_eq( Sum(Piecewise((1 / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k))) assert cumuf.subs({n: 6, k: 2}).doit() == S(1) / 3 t = Dummy('t') cf = characteristic_function(D)(t) assert cf.dummy_eq( Sum(Piecewise((exp(ki * I * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert cf.subs( n, 3).doit() == exp(3 * I * t) / 3 + exp(2 * I * t) / 3 + exp(I * t) / 3 mgf = moment_generating_function(D)(t) assert mgf.dummy_eq( Sum(Piecewise((exp(ki * t) / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert mgf.subs(n, 3).doit() == exp(3 * t) / 3 + exp(2 * t) / 3 + exp(t) / 3