Example #1
0
def test_sample_numpy():
    distribs_numpy = [
        Beta("B", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        for X in distribs_numpy:
            samps = sample(X, size=size, library='numpy')
            for sam in samps:
                assert sam in X.pspace.domain.set
        raises(NotImplementedError,
               lambda: sample(Chi("C", 1), library='numpy'))
    raises(
        NotImplementedError,
        lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow'))
Example #2
0
def test_pareto_numeric():
    xm, beta = 3, 2
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    assert E(X) == alpha*xm/S(alpha - 1)
    assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size, library='scipy')
            samps2 = sample(X, size=(2, 2), library='scipy')
            for sam in samps:
                assert sam in X.pspace.domain.set
            for i in range(2):
                for j in range(2):
                    assert samps2[i][j] in X.pspace.domain.set
def test_sample_pymc3():
    distribs_pymc3 = [
        Beta("B", 1, 1),
        Cauchy("C", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GaussianInverse("GI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    pymc3 = import_module('pymc3')
    if not pymc3:
        skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            for X in distribs_pymc3:
                samps = next(sample(X, size=size, library='pymc3'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
            raises(NotImplementedError,
                   lambda: next(sample(Chi("C", 1), library='pymc3')))
Example #5
0
def test_pareto():
    xm, beta = symbols('xm beta', positive=True, finite=True)
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    dens = density(X)
    x = Symbol('x')
    assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
Example #6
0
def test_pareto_numeric():
    xm, beta = 3, 2
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    assert E(X) == alpha*xm/S(alpha - 1)
    assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
    assert median(X) == FiniteSet(3*2**Rational(1, 7))
Example #7
0
def test_pareto():

    xm, beta = symbols('xm beta', positive=True, bounded=True)
    alpha = beta + 5
    X = Pareto(xm, alpha)

    density = Density(X)
    x = Symbol('x')
    assert density(x) == x**(-(alpha+1))*xm**(alpha)*(alpha)
Example #8
0
def test_pareto():
    xm, beta = symbols('xm beta', positive=True)
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    dens = density(X)
    x = Symbol('x')
    assert dens(x) == x**(-(alpha + 1)) * xm**(alpha) * (alpha)

    assert simplify(E(X)) == alpha * xm / (alpha - 1)
Example #9
0
def test_prefab_sampling():
    N = Normal('X', 0, 1)
    L = LogNormal('L', 0, 1)
    E = Exponential('Ex', 1)
    P = Pareto('P', 1, 3)
    W = Weibull('W', 1, 1)
    U = Uniform('U', 0, 1)
    B = Beta('B', 2, 5)
    G = Gamma('G', 1, 3)

    variables = [N, L, E, P, W, U, B, G]
    niter = 10
    for var in variables:
        for i in range(niter):
            assert sample(var) in var.pspace.domain.set
Example #10
0
def test_prefab_sampling():
    N = Normal(0, 1)
    L = LogNormal(0, 1)
    E = Exponential(1)
    P = Pareto(1, 3)
    W = Weibull(1, 1)
    U = Uniform(0, 1)
    B = Beta(2,5)
    G = Gamma(1,3)

    variables = [N,L,E,P,W,U,B,G]
    niter = 10
    for var in variables:
        for i in xrange(niter):
            assert Sample(var) in var.pspace.domain.set
Example #11
0
def test_precomputed_cdf():
    x = symbols("x", real=True, finite=True)
    mu = symbols("mu", real=True, finite=True)
    sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True)
    n = symbols("n", integer=True, positive=True, finite=True)
    distribs = [
            Normal("X", mu, sigma),
            Pareto("P", xm, alpha),
            ChiSquared("C", n),
            Exponential("E", sigma),
            # LogNormal("L", mu, sigma),
    ]
    for X in distribs:
        compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
        compdiff = simplify(compdiff.rewrite(erfc))
        assert compdiff == 0
Example #12
0
def test_pareto():
    xm, beta = symbols('xm beta', positive=True)
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    dens = density(X)

    #Tests cdf function
    assert cdf(X)(x) == \
           Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))

    #Tests characteristic_function
    assert characteristic_function(X)(x) == \
           ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))

    assert dens(x) == x**(-(alpha + 1)) * xm**(alpha) * (alpha)

    assert simplify(E(X)) == alpha * xm / (alpha - 1)
def test_prefab_sampling():
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests')
    N = Normal('X', 0, 1)
    L = LogNormal('L', 0, 1)
    E = Exponential('Ex', 1)
    P = Pareto('P', 1, 3)
    W = Weibull('W', 1, 1)
    U = Uniform('U', 0, 1)
    B = Beta('B', 2, 5)
    G = Gamma('G', 1, 3)

    variables = [N, L, E, P, W, U, B, G]
    niter = 10
    size = 5
    for var in variables:
        for _ in range(niter):
            assert sample(var) in var.pspace.domain.set
            samps = sample(var, size=size)
            for samp in samps:
                assert samp in var.pspace.domain.set
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numsamples = 5
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            g_sample = list(
                sample(Gamma("G", 2, 7), size=size, numsamples=numsamples))
            assert len(g_sample) == numsamples
            for X in distribs_scipy:
                samps = next(sample(X, size=size, library='scipy'))
                samps2 = next(sample(X, size=(2, 2), library='scipy'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
                for i in range(2):
                    for j in range(2):
                        assert samps2[i][j] in X.pspace.domain.set
Example #15
0
def test_moment_generating_function():
    t = symbols('t', positive=True)

    # Symbolic tests
    a, b, c = symbols('a b c')

    mgf = moment_generating_function(Beta('x', a, b))(t)
    assert mgf == hyper((a, ), (a + b, ), t)

    mgf = moment_generating_function(Chi('x', a))(t)
    assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
        hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
        hyper((a/2,), (S.Half,), t**2/2)

    mgf = moment_generating_function(ChiSquared('x', a))(t)
    assert mgf == (1 - 2 * t)**(-a / 2)

    mgf = moment_generating_function(Erlang('x', a, b))(t)
    assert mgf == (1 - t / b)**(-a)

    mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2) / (1 - t / c)

    mgf = moment_generating_function(Exponential('x', a))(t)
    assert mgf == a / (a - t)

    mgf = moment_generating_function(Gamma('x', a, b))(t)
    assert mgf == (-b * t + 1)**(-a)

    mgf = moment_generating_function(Gumbel('x', a, b))(t)
    assert mgf == exp(b * t) * gamma(-a * t + 1)

    mgf = moment_generating_function(Gompertz('x', a, b))(t)
    assert mgf == b * exp(b) * expint(t / a, b)

    mgf = moment_generating_function(Laplace('x', a, b))(t)
    assert mgf == exp(a * t) / (-b**2 * t**2 + 1)

    mgf = moment_generating_function(Logistic('x', a, b))(t)
    assert mgf == exp(a * t) * beta(-b * t + 1, b * t + 1)

    mgf = moment_generating_function(Normal('x', a, b))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2)

    mgf = moment_generating_function(Pareto('x', a, b))(t)
    assert mgf == b * (-a * t)**b * uppergamma(-b, -a * t)

    mgf = moment_generating_function(QuadraticU('x', a, b))(t)
    assert str(mgf) == (
        "(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
        "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")

    mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
    assert mgf == pi**2 * exp(a * t) * sinh(b * t) / (b * t *
                                                      (b**2 * t**2 + pi**2))

    mgf = moment_generating_function(Rayleigh('x', a))(t)
    assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
        *exp(a**2*t**2/2)/2 + 1

    mgf = moment_generating_function(Triangular('x', a, b, c))(t)
    assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
                        "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")

    mgf = moment_generating_function(Uniform('x', a, b))(t)
    assert mgf == (-exp(a * t) + exp(b * t)) / (t * (-a + b))

    mgf = moment_generating_function(UniformSum('x', a))(t)
    assert mgf == ((exp(t) - 1) / t)**a

    mgf = moment_generating_function(WignerSemicircle('x', a))(t)
    assert mgf == 2 * besseli(1, a * t) / (a * t)

    # Numeric tests

    mgf = moment_generating_function(Beta('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == hyper((2, ), (3, ), 1) / 2

    mgf = moment_generating_function(Chi('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == sqrt(2) * hyper(
        (1, ), (Rational(3, 2), ), S.Half) / sqrt(pi) + hyper(
            (Rational(3, 2), ),
            (Rational(3, 2), ), S.Half) + 2 * sqrt(2) * hyper(
                (2, ), (Rational(5, 2), ), S.Half) / (3 * sqrt(pi))

    mgf = moment_generating_function(ChiSquared('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == I

    mgf = moment_generating_function(Erlang('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
    assert mgf.diff(t).subs(t, 2) == -exp(2)

    mgf = moment_generating_function(Exponential('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gamma('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == EulerGamma + 1

    mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -e * meijerg(((), (1, 1)),
                                                  ((0, 0, 0), ()), 1)

    mgf = moment_generating_function(Laplace('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Logistic('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == beta(1, 1)

    mgf = moment_generating_function(Normal('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == exp(S.Half)

    mgf = moment_generating_function(Pareto('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == expint(1, 0)

    mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -12 * e - 3 * exp(2)

    mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
    (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)

    mgf = moment_generating_function(Rayleigh('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == sqrt(2) * sqrt(pi) / 2

    mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -e + exp(3)

    mgf = moment_generating_function(Uniform('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(UniformSum('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
        besseli(0, 1)