Example #1
0
def test_array_as_explicit_call():

    assert ZeroArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray.zeros(
        3, 2, 4)
    assert OneArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray(
        [1 for i in range(3 * 2 * 4)]).reshape(3, 2, 4)

    k = Symbol("k")
    X = ArraySymbol("X", k, 3, 2)
    raises(ValueError, lambda: X.as_explicit())
    raises(ValueError, lambda: ZeroArray(k, 2, 3).as_explicit())
    raises(ValueError, lambda: OneArray(2, k, 2).as_explicit())

    A = ArraySymbol("A", 3, 3)
    B = ArraySymbol("B", 3, 3)

    texpr = tensorproduct(A, B)
    assert isinstance(texpr, ArrayTensorProduct)
    assert texpr.as_explicit() == tensorproduct(A.as_explicit(),
                                                B.as_explicit())

    texpr = tensorcontraction(A, (0, 1))
    assert isinstance(texpr, ArrayContraction)
    assert texpr.as_explicit() == A[0, 0] + A[1, 1] + A[2, 2]

    texpr = tensordiagonal(A, (0, 1))
    assert isinstance(texpr, ArrayDiagonal)
    assert texpr.as_explicit() == ImmutableDenseNDimArray(
        [A[0, 0], A[1, 1], A[2, 2]])

    texpr = permutedims(A, [1, 0])
    assert isinstance(texpr, PermuteDims)
    assert texpr.as_explicit() == permutedims(A.as_explicit(), [1, 0])
Example #2
0
def test_array_printer():
    A = ArraySymbol('A', (4, 4, 6, 6, 6))
    I = IndexedBase('I')
    i, j, k = Idx('i', (0, 1)), Idx('j', (2, 3)), Idx('k', (4, 5))

    prntr = NumPyPrinter()
    assert prntr.doprint(ZeroArray(5)) == 'numpy.zeros((5,))'
    assert prntr.doprint(OneArray(5)) == 'numpy.ones((5,))'
    assert prntr.doprint(ArrayContraction(
        A, [2, 3])) == 'numpy.einsum("abccd->abd", A)'
    assert prntr.doprint(I) == 'I'
    assert prntr.doprint(ArrayDiagonal(
        A, [2, 3, 4])) == 'numpy.einsum("abccc->abc", A)'
    assert prntr.doprint(ArrayDiagonal(
        A, [0, 1], [2, 3])) == 'numpy.einsum("aabbc->cab", A)'
    assert prntr.doprint(ArrayContraction(
        A, [2], [3])) == 'numpy.einsum("abcde->abe", A)'
    assert prntr.doprint(Assignment(I[i, j, k], I[i, j, k])) == 'I = I'

    prntr = TensorflowPrinter()
    assert prntr.doprint(ZeroArray(5)) == 'tensorflow.zeros((5,))'
    assert prntr.doprint(OneArray(5)) == 'tensorflow.ones((5,))'
    assert prntr.doprint(ArrayContraction(
        A, [2, 3])) == 'tensorflow.linalg.einsum("abccd->abd", A)'
    assert prntr.doprint(I) == 'I'
    assert prntr.doprint(ArrayDiagonal(
        A, [2, 3, 4])) == 'tensorflow.linalg.einsum("abccc->abc", A)'
    assert prntr.doprint(ArrayDiagonal(
        A, [0, 1], [2, 3])) == 'tensorflow.linalg.einsum("aabbc->cab", A)'
    assert prntr.doprint(ArrayContraction(
        A, [2], [3])) == 'tensorflow.linalg.einsum("abcde->abe", A)'
    assert prntr.doprint(Assignment(I[i, j, k], I[i, j, k])) == 'I = I'
def test_arrayexpr_convert_array_to_matrix():

    cg = ArrayContraction(ArrayTensorProduct(M), (0, 1))
    assert convert_array_to_matrix(cg) == Trace(M)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1), (2, 3))
    assert convert_array_to_matrix(cg) == Trace(M) * Trace(N)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
    assert convert_array_to_matrix(cg) == Trace(M * N)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert convert_array_to_matrix(cg) == Trace(M * N.T)

    cg = convert_matrix_to_array(M * N * P)
    assert convert_array_to_matrix(cg) == M * N * P

    cg = convert_matrix_to_array(M * N.T * P)
    assert convert_array_to_matrix(cg) == M * N.T * P

    cg = ArrayContraction(ArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6))
    assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * N, P * Q)

    cg = ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2))
    assert convert_array_to_matrix(cg) == -2 * M * N

    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    c = MatrixSymbol("c", k, 1)
    cg = PermuteDims(
        ArrayContraction(
            ArrayTensorProduct(
                a,
                ArrayAdd(
                    ArrayTensorProduct(b, c),
                    ArrayTensorProduct(c, b),
                )
            ), (2, 4)), [0, 1, 3, 2])
    assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b)

    za = ZeroArray(m, n)
    assert convert_array_to_matrix(za) == ZeroMatrix(m, n)

    cg = ArrayTensorProduct(3, M)
    assert convert_array_to_matrix(cg) == 3 * M

    # Partial conversion to matrix multiplication:
    expr = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (0, 2), (1, 4, 6))
    assert convert_array_to_matrix(expr) == ArrayContraction(ArrayTensorProduct(M.T*N, P, Q), (0, 2, 4))

    x = MatrixSymbol("x", k, 1)
    cg = PermuteDims(
        ArrayContraction(ArrayTensorProduct(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))),
                                (0, 5)), Permutation(1, 2, 3))
    assert convert_array_to_matrix(cg) == x

    expr = ArrayAdd(M, PermuteDims(M, [1, 0]))
    assert convert_array_to_matrix(expr) == M + Transpose(M)
Example #4
0
def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
    if isinstance(expr.expr, ArrayTensorProduct):
        args = list(expr.expr.args)
        diag_indices = list(expr.diagonal_indices)
        mapping = _get_mapping_from_subranks(
            [_get_subrank(arg) for arg in args])
        tuple_links = [[mapping[j] for j in i] for i in diag_indices]
        contr_indices = []
        total_rank = get_rank(expr)
        replaced = [False for arg in args]
        for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
            if len(abs_pos) != 2:
                continue
            (pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
            arg1 = args[pos1_outer]
            arg2 = args[pos2_outer]
            if get_rank(arg1) != 2 or get_rank(arg2) != 2:
                if replaced[pos1_outer]:
                    diag_indices[i] = None
                if replaced[pos2_outer]:
                    diag_indices[i] = None
                continue
            pos1_in2 = 1 - pos1_inner
            pos2_in2 = 1 - pos2_inner
            if arg1.shape[pos1_in2] == 1:
                if arg1.shape[pos1_inner] != 1:
                    darg1 = DiagMatrix(arg1)
                else:
                    darg1 = arg1
                args.append(darg1)
                contr_indices.append(
                    ((pos2_outer, pos2_inner), (len(args) - 1, pos1_inner)))
                total_rank += 1
                diag_indices[i] = None
                args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
                replaced[pos1_outer] = True
            elif arg2.shape[pos2_in2] == 1:
                if arg2.shape[pos2_inner] != 1:
                    darg2 = DiagMatrix(arg2)
                else:
                    darg2 = arg2
                args.append(darg2)
                contr_indices.append(
                    ((pos1_outer, pos1_inner), (len(args) - 1, pos2_inner)))
                total_rank += 1
                diag_indices[i] = None
                args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
                replaced[pos2_outer] = True
        diag_indices_new = [i for i in diag_indices if i is not None]
        cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
        contr_indices2 = [
            tuple(cumul[a] + b for a, b in i) for i in contr_indices
        ]
        tc = _array_contraction(_array_tensor_product(*args), *contr_indices2)
        td = _array_diagonal(tc, *diag_indices_new)
        return td
    return expr
Example #5
0
def test_diag2contraction_diagmatrix():
    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, a), (1, 2))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(CodegenArrayTensorProduct(M, OneArray(1), DiagMatrix(a)), (1, 3))

    raises(ValueError, lambda: CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M), (1, 2)))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a.T, M), (1, 2))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(CodegenArrayTensorProduct(OneArray(1), M, DiagMatrix(a.T)), (1, 4))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a.T, M, N, b.T), (1, 2), (4, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M, N, b.T), (0, 2), (4, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M, N, b.T), (0, 4), (3, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9))
Example #6
0
def test_arrayexpr_split_multiple_contractions():
    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    X = MatrixSymbol("X", k, k)

    cg = _array_contraction(
        _array_tensor_product(A.T, a, b, b.T, (A * X * b).applyfunc(cos)),
        (1, 2, 8), (5, 6, 9))
    expected = _array_contraction(
        _array_tensor_product(A.T, DiagMatrix(a), OneArray(1), b, b.T,
                              (A * X * b).applyfunc(cos)), (1, 3), (2, 9),
        (6, 7, 10))
    assert cg.split_multiple_contractions().dummy_eq(expected)

    # Check no overlap of lines:

    cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4),
                            (5, 6, 8), (3, 7))
    assert cg.split_multiple_contractions() == cg

    cg = _array_contraction(_array_tensor_product(a, b, A), (0, 2, 4), (1, 3))
    assert cg.split_multiple_contractions() == cg
def test_one_array():
    assert OneArray() == 1
    assert OneArray().is_Integer

    oa = OneArray(3, 2, 4)
    assert oa.shape == (3, 2, 4)
    oa_e = oa.as_explicit()
    assert oa_e.shape == (3, 2, 4)

    m, n, k = symbols("m n k")
    oa = OneArray(m, n, k, 2)
    assert oa.shape == (m, n, k, 2)
    raises(ValueError, lambda: oa.as_explicit())
Example #8
0
def test_diag2contraction_diagmatrix():
    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, a), (1, 2))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(M, OneArray(1), DiagMatrix(a)), (1, 3))

    raises(
        ValueError,
        lambda: CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M), (1, 2)))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a.T, M), (1, 2))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), M, DiagMatrix(a.T)), (1, 4))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a.T, M, N, b.T),
                              (1, 2), (4, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), M, N, OneArray(1),
                                  DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7),
        (3, 9))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M, N, b.T), (0, 2),
                              (4, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1),
                                  M, N, OneArray(1), DiagMatrix(a),
                                  DiagMatrix(b.T)), (1, 6), (3, 9))

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, M, N, b.T), (0, 4),
                              (3, 7))
    res = _array_diag2contr_diagmatrix(cg)
    assert res.shape == cg.shape
    assert res == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1),
                                  M, N, OneArray(1), DiagMatrix(a),
                                  DiagMatrix(b.T)), (3, 6), (2, 9))

    I1 = Identity(1)
    x = MatrixSymbol("x", k, 1)
    A = MatrixSymbol("A", k, k)
    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, A.T, I1), (0, 2))
    assert _array_diag2contr_diagmatrix(cg).shape == cg.shape
    assert array2matrix(cg).shape == cg.shape
Example #9
0
def test_arrayexpr_convert_indexed_to_array_broadcast():
    A = ArraySymbol("A", (3, 3))
    B = ArraySymbol("B", (3, 3))

    expr = A[i, j] + B[k, l]
    O2 = OneArray(3, 3)
    expected = ArrayAdd(ArrayTensorProduct(A, O2), ArrayTensorProduct(O2, B))
    assert convert_indexed_to_array(expr) == expected
    assert convert_indexed_to_array(expr, [i, j, k, l]) == expected
    assert convert_indexed_to_array(expr, [l, k, i, j]) == ArrayAdd(
        PermuteDims(ArrayTensorProduct(O2, A), [1, 0, 2, 3]),
        PermuteDims(ArrayTensorProduct(B, O2), [1, 0, 2, 3]))

    expr = A[i, j] + B[j, k]
    O1 = OneArray(3)
    assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(
        ArrayTensorProduct(A, O1), ArrayTensorProduct(O1, B))

    C = ArraySymbol("C", (d0, d1))
    D = ArraySymbol("D", (d3, d1))

    expr = C[i, j] + D[k, j]
    assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(
        ArrayTensorProduct(C, OneArray(d3)),
        PermuteDims(ArrayTensorProduct(OneArray(d0), D), [0, 2, 1]))

    X = ArraySymbol("X", (5, 3))

    expr = X[i, n] - X[j, n]
    assert convert_indexed_to_array(expr, [i, j, n]) == ArrayAdd(
        ArrayTensorProduct(-1, OneArray(5), X),
        PermuteDims(ArrayTensorProduct(X, OneArray(5)), [0, 2, 1]))

    raises(ValueError, lambda: convert_indexed_to_array(C[i, j] + D[i, j]))
def test_array_symbol_and_element():
    A = ArraySymbol("A", (2,))
    A0 = ArrayElement(A, (0,))
    A1 = ArrayElement(A, (1,))
    assert A[0] == A0
    assert A[1] != A0
    assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])

    A2 = tensorproduct(A, A)
    assert A2.shape == (2, 2)
    # TODO: not yet supported:
    # assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
    A3 = tensorcontraction(A2, (0, 1))
    assert A3.shape == ()
    # TODO: not yet supported:
    # assert A3.as_explicit() == Array([])

    A = ArraySymbol("A", (2, 3, 4))
    Ae = A.as_explicit()
    assert Ae == ImmutableDenseNDimArray(
        [[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)])

    p = _permute_dims(A, Permutation(0, 2, 1))
    assert isinstance(p, PermuteDims)

    A = ArraySymbol("A", (2,))
    raises(IndexError, lambda: A[()])
    raises(IndexError, lambda: A[0, 1])
    raises(ValueError, lambda: A[-1])
    raises(ValueError, lambda: A[2])

    O = OneArray(3, 4)
    Z = ZeroArray(m, n)

    raises(IndexError, lambda: O[()])
    raises(IndexError, lambda: O[1, 2, 3])
    raises(ValueError, lambda: O[3, 0])
    raises(ValueError, lambda: O[0, 4])

    assert O[1, 2] == 1
    assert Z[1, 2] == 0
def test_arrayexpr_convert_array_to_diagonalized_vector():

    # Check matrix recognition over trivial dimensions:

    cg = ArrayTensorProduct(a, b)
    assert convert_array_to_matrix(cg) == a * b.T

    cg = ArrayTensorProduct(I1, a, b)
    assert convert_array_to_matrix(cg) == a * b.T

    # Recognize trace inside a tensor product:

    cg = ArrayContraction(ArrayTensorProduct(A, B, C), (0, 3), (1, 2))
    assert convert_array_to_matrix(cg) == Trace(A * B) * C

    # Transform diagonal operator to contraction:

    cg = ArrayDiagonal(ArrayTensorProduct(A, a), (1, 2))
    assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (1, 3))
    assert convert_array_to_matrix(cg) == A * DiagMatrix(a)

    cg = ArrayDiagonal(ArrayTensorProduct(a, b), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == PermuteDims(
        ArrayContraction(ArrayTensorProduct(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0]
    )
    assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a)

    cg = ArrayDiagonal(ArrayTensorProduct(A, a), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (0, 3))
    assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a)

    cg = ArrayDiagonal(ArrayTensorProduct(I, x, I1), (0, 2), (3, 5))
    assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
    assert convert_array_to_matrix(cg) == DiagMatrix(x)

    cg = ArrayDiagonal(ArrayTensorProduct(I, x, A, B), (1, 2), (5, 6))
    assert _array_diag2contr_diagmatrix(cg) == ArrayDiagonal(ArrayContraction(ArrayTensorProduct(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6))
    # TODO: this is returning a wrong result:
    # convert_array_to_matrix(cg)

    cg = ArrayDiagonal(ArrayTensorProduct(I1, a, b), (1, 3, 5))
    assert convert_array_to_matrix(cg) == a*b.T

    cg = ArrayDiagonal(ArrayTensorProduct(I1, a, b), (1, 3))
    assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(OneArray(1), a, b, I1), (2, 6))
    assert convert_array_to_matrix(cg) == a*b.T

    cg = ArrayDiagonal(ArrayTensorProduct(x, I1), (1, 2))
    assert isinstance(cg, ArrayDiagonal)
    assert cg.diagonal_indices == ((1, 2),)
    assert convert_array_to_matrix(cg) == x

    cg = ArrayDiagonal(ArrayTensorProduct(x, I), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == ArrayContraction(ArrayTensorProduct(OneArray(1), I, DiagMatrix(x)), (1, 3))
    assert convert_array_to_matrix(cg).doit() == DiagMatrix(x)

    raises(ValueError, lambda: ArrayDiagonal(x, (1,)))

    # Ignore identity matrices with contractions:

    cg = ArrayContraction(ArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7))
    assert cg.split_multiple_contractions() == cg
    assert convert_array_to_matrix(cg) == Trace(A) * I

    cg = ArrayContraction(ArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4))
    assert cg.split_multiple_contractions() == cg
    assert convert_array_to_matrix(cg).doit() == Trace(A) * I

    # Add DiagMatrix when required:

    cg = ArrayContraction(ArrayTensorProduct(A, a), (1, 2))
    assert cg.split_multiple_contractions() == cg
    assert convert_array_to_matrix(cg) == A * a

    cg = ArrayContraction(ArrayTensorProduct(A, a, B), (1, 2, 4))
    assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), B), (1, 2), (3, 5))
    assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B

    cg = ArrayContraction(ArrayTensorProduct(A, a, B), (0, 2, 4))
    assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5))
    assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B

    cg = ArrayContraction(ArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9))
    assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1),
                                                DiagMatrix(b), OneArray(1), DiagMatrix(a), OneArray(1), B),
                                               (0, 2), (3, 5), (6, 9), (8, 12))
    assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T

    cg = ArrayContraction(ArrayTensorProduct(I1, I1, I1), (1, 2, 4))
    assert cg.split_multiple_contractions() == ArrayContraction(ArrayTensorProduct(I1, I1, OneArray(1), I1), (1, 2), (3, 5))
    assert convert_array_to_matrix(cg) == 1

    cg = ArrayContraction(ArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9))
    assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A

    cg = ArrayContraction(ArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8))
    expected = ArrayContraction(ArrayTensorProduct(A, DiagMatrix(a), OneArray(1), C, DiagMatrix(a), OneArray(1), B), (1, 3), (2, 5), (6, 7), (8, 10))
    assert cg.split_multiple_contractions() == expected
    assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B

    cg = ArrayContraction(ArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
    expected = ArrayContraction(ArrayTensorProduct(a, I1, OneArray(1), b, I1, OneArray(1), (a.T*b).applyfunc(cos)),
                                (1, 3), (2, 10), (6, 8), (7, 11))
    assert cg.split_multiple_contractions().dummy_eq(expected)
    assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T))
Example #12
0
def test_recognize_diagonalized_vectors():

    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    X = MatrixSymbol("X", k, k)
    x = MatrixSymbol("x", k, 1)
    I1 = Identity(1)
    I = Identity(k)

    # Check matrix recognition over trivial dimensions:

    cg = CodegenArrayTensorProduct(a, b)
    assert recognize_matrix_expression(cg) == a * b.T

    cg = CodegenArrayTensorProduct(I1, a, b)
    assert recognize_matrix_expression(cg) == a * b.T

    # Recognize trace inside a tensor product:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3),
                                 (1, 2))
    assert recognize_matrix_expression(cg) == Trace(A * B) * C

    # Transform diagonal operator to contraction:

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (1, 3))
    assert recognize_matrix_expression(cg) == A * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayPermuteDims(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(DiagMatrix(a), OneArray(1), b), (0, 3)),
        [1, 2, 0])
    assert recognize_matrix_expression(cg) == b.T * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (0, 3))
    assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2),
                              (3, 5))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
    assert recognize_matrix_expression(cg) == DiagMatrix(x)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2),
                              (5, 6))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayDiagonal(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(I, OneArray(1), A, B, DiagMatrix(x)),
            (1, 7)), (5, 6))
    # TODO: not yet working
    #  assert recognize_matrix_expression(cg)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2))
    assert isinstance(cg, CodegenArrayDiagonal)
    assert cg.diagonal_indices == ((1, 2), )
    assert recognize_matrix_expression(cg) == x

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), I, DiagMatrix(x)), (1, 3))
    assert recognize_matrix_expression(cg).doit() == DiagMatrix(x)

    raises(ValueError, lambda: CodegenArrayDiagonal(x, (1, )))

    # Ignore identity matrices with contractions:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2),
                                 (1, 3), (5, 7))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg) == Trace(A) * I

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I),
                                 (1, 5), (3, 4))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg).doit() == Trace(A) * I

    # Add DiagMatrix when required:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg) == A * a

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4))
    assert recognize_matrix_expression(cg) == A * DiagMatrix(a) * B

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4))
    assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a) * B

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B),
                                 (0, 2, 4, 7, 9))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b),
                                  DiagMatrix(a), B), (0, 2), (3, 4), (5, 7),
        (6, 9))
    assert recognize_matrix_expression(
        cg).doit() == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1),
                                 (1, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4))
    assert recognize_matrix_expression(cg).doit() == Identity(1)

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A),
                                 (1, 2, 8), (5, 6, 9))
    assert recognize_matrix_expression(
        cg.split_multiple_contractions()).doit() == A

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B),
                                 (1, 2, 4), (5, 6, 8))
    expected = CodegenArrayContraction(
        CodegenArrayTensorProduct(DiagMatrix(a), DiagMatrix(a), C, A, B),
        (0, 4), (1, 7), (2, 5), (3, 8))
    assert cg.split_multiple_contractions() == expected
    assert recognize_matrix_expression(
        cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B

    cg = CodegenArrayContraction(
        CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)),
        (1, 2, 8), (5, 6, 9))
    assert cg.split_multiple_contractions().dummy_eq(
        CodegenArrayContraction(
            CodegenArrayTensorProduct((a.T * b).applyfunc(cos), I1, I1, a, b),
            (0, 2), (1, 4), (3, 7), (5, 9)))
    assert recognize_matrix_expression(cg).doit().dummy_eq(
        MatMul(a, (a.T * b).applyfunc(cos), b.T))

    cg = CodegenArrayContraction(
        CodegenArrayTensorProduct(A.T, a, b, b.T, (A * X * b).applyfunc(cos)),
        (1, 2, 8), (5, 6, 9))
    assert cg.split_multiple_contractions().dummy_eq(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(DiagMatrix(a),
                                      (A * X * b).applyfunc(cos), A.T, b, b.T),
            (0, 2), (1, 5), (3, 7, 8)))
    # assert recognize_matrix_expression(cg)

    # Check no overlap of lines:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B),
                                 (1, 2, 4), (5, 6, 8), (3, 7))
    assert cg.split_multiple_contractions() == cg

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4),
                                 (1, 3))
    assert cg.split_multiple_contractions() == cg
Example #13
0
def _convert_indexed_to_array(expr):
    if isinstance(expr, Sum):
        function = expr.function
        summation_indices = expr.variables
        subexpr, subindices = _convert_indexed_to_array(function)
        subindicessets = {
            j: i
            for i in subindices if isinstance(i, frozenset) for j in i
        }
        summation_indices = sorted(set(
            [subindicessets.get(i, i) for i in summation_indices]),
                                   key=default_sort_key)
        # TODO: check that Kronecker delta is only contracted to one other element:
        kronecker_indices = set([])
        if isinstance(function, Mul):
            for arg in function.args:
                if not isinstance(arg, KroneckerDelta):
                    continue
                arg_indices = sorted(set(arg.indices), key=default_sort_key)
                if len(arg_indices) == 2:
                    kronecker_indices.update(arg_indices)
        kronecker_indices = sorted(kronecker_indices, key=default_sort_key)
        # Check dimensional consistency:
        shape = get_shape(subexpr)
        if shape:
            for ind, istart, iend in expr.limits:
                i = _get_argindex(subindices, ind)
                if istart != 0 or iend + 1 != shape[i]:
                    raise ValueError(
                        "summation index and array dimension mismatch: %s" %
                        ind)
        contraction_indices = []
        subindices = list(subindices)
        if isinstance(subexpr, ArrayDiagonal):
            diagonal_indices = list(subexpr.diagonal_indices)
            dindices = subindices[-len(diagonal_indices):]
            subindices = subindices[:-len(diagonal_indices)]
            for index in summation_indices:
                if index in dindices:
                    position = dindices.index(index)
                    contraction_indices.append(diagonal_indices[position])
                    diagonal_indices[position] = None
            diagonal_indices = [i for i in diagonal_indices if i is not None]
            for i, ind in enumerate(subindices):
                if ind in summation_indices:
                    pass
            if diagonal_indices:
                subexpr = _array_diagonal(subexpr.expr, *diagonal_indices)
            else:
                subexpr = subexpr.expr

        axes_contraction = defaultdict(list)
        for i, ind in enumerate(subindices):
            include = all(j not in kronecker_indices
                          for j in ind) if isinstance(
                              ind, frozenset) else ind not in kronecker_indices
            if ind in summation_indices and include:
                axes_contraction[ind].append(i)
                subindices[i] = None
        for k, v in axes_contraction.items():
            if any(i in kronecker_indices for i in k) if isinstance(
                    k, frozenset) else k in kronecker_indices:
                continue
            contraction_indices.append(tuple(v))
        free_indices = [i for i in subindices if i is not None]
        indices_ret = list(free_indices)
        indices_ret.sort(key=lambda x: free_indices.index(x))
        return _array_contraction(
            subexpr, *contraction_indices,
            free_indices=free_indices), tuple(indices_ret)
    if isinstance(expr, Mul):
        args, indices = zip(
            *[_convert_indexed_to_array(arg) for arg in expr.args])
        # Check if there are KroneckerDelta objects:
        kronecker_delta_repl = {}
        for arg in args:
            if not isinstance(arg, KroneckerDelta):
                continue
            # Diagonalize two indices:
            i, j = arg.indices
            kindices = set(arg.indices)
            if i in kronecker_delta_repl:
                kindices.update(kronecker_delta_repl[i])
            if j in kronecker_delta_repl:
                kindices.update(kronecker_delta_repl[j])
            kindices = frozenset(kindices)
            for index in kindices:
                kronecker_delta_repl[index] = kindices
        # Remove KroneckerDelta objects, their relations should be handled by
        # ArrayDiagonal:
        newargs = []
        newindices = []
        for arg, loc_indices in zip(args, indices):
            if isinstance(arg, KroneckerDelta):
                continue
            newargs.append(arg)
            newindices.append(loc_indices)
        flattened_indices = [
            kronecker_delta_repl.get(j, j) for i in newindices for j in i
        ]
        diagonal_indices, ret_indices = _get_diagonal_indices(
            flattened_indices)
        tp = _array_tensor_product(*newargs)
        if diagonal_indices:
            return _array_diagonal(tp, *diagonal_indices), ret_indices
        else:
            return tp, ret_indices
    if isinstance(expr, MatrixElement):
        indices = expr.args[1:]
        diagonal_indices, ret_indices = _get_diagonal_indices(indices)
        if diagonal_indices:
            return _array_diagonal(expr.args[0],
                                   *diagonal_indices), ret_indices
        else:
            return expr.args[0], ret_indices
    if isinstance(expr, ArrayElement):
        indices = expr.indices
        diagonal_indices, ret_indices = _get_diagonal_indices(indices)
        if diagonal_indices:
            return _array_diagonal(expr.name, *diagonal_indices), ret_indices
        else:
            return expr.name, ret_indices
    if isinstance(expr, Indexed):
        indices = expr.indices
        diagonal_indices, ret_indices = _get_diagonal_indices(indices)
        if diagonal_indices:
            return _array_diagonal(expr.base, *diagonal_indices), ret_indices
        else:
            return expr.args[0], ret_indices
    if isinstance(expr, IndexedBase):
        raise NotImplementedError
    if isinstance(expr, KroneckerDelta):
        return expr, expr.indices
    if isinstance(expr, Add):
        args, indices = zip(
            *[_convert_indexed_to_array(arg) for arg in expr.args])
        args = list(args)
        # Check if all indices are compatible. Otherwise expand the dimensions:
        index0 = []
        shape0 = []
        for arg, arg_indices in zip(args, indices):
            arg_indices_set = set(arg_indices)
            arg_indices_missing = arg_indices_set.difference(index0)
            index0.extend([i for i in arg_indices if i in arg_indices_missing])
            arg_shape = get_shape(arg)
            shape0.extend([
                arg_shape[i] for i, e in enumerate(arg_indices)
                if e in arg_indices_missing
            ])
        for i, (arg, arg_indices) in enumerate(zip(args, indices)):
            if len(arg_indices) < len(index0):
                missing_indices_pos = [
                    i for i, e in enumerate(index0) if e not in arg_indices
                ]
                missing_shape = [shape0[i] for i in missing_indices_pos]
                arg_indices = tuple(index0[j]
                                    for j in missing_indices_pos) + arg_indices
                args[i] = _array_tensor_product(OneArray(*missing_shape),
                                                args[i])
            permutation = Permutation([arg_indices.index(j) for j in index0])
            # Perform index permutations:
            args[i] = _permute_dims(args[i], permutation)
        return _array_add(*args), tuple(index0)
    if isinstance(expr, Pow):
        subexpr, subindices = _convert_indexed_to_array(expr.base)
        if isinstance(expr.exp, (int, Integer)):
            diags = zip(*[(2 * i, 2 * i + 1) for i in range(expr.exp)])
            arr = _array_diagonal(
                _array_tensor_product(*[subexpr for i in range(expr.exp)]),
                *diags)
            return arr, subindices
    if isinstance(expr, Function):
        subexpr, subindices = _convert_indexed_to_array(expr.args[0])
        return ArrayElementwiseApplyFunc(type(expr), subexpr), subindices
    return expr, ()
Example #14
0
def identify_removable_identity_matrices(expr):
    editor = _EditArrayContraction(expr)

    flag: bool = True
    while flag:
        flag = False
        for arg_with_ind in editor.args_with_ind:
            if isinstance(arg_with_ind.element, Identity):
                k = arg_with_ind.element.shape[0]
                # Candidate for removal:
                if arg_with_ind.indices == [None, None]:
                    # Free identity matrix, will be cleared by _remove_trivial_dims:
                    continue
                elif None in arg_with_ind.indices:
                    ind = [j for j in arg_with_ind.indices if j is not None][0]
                    counted = editor.count_args_with_index(ind)
                    if counted == 1:
                        # Identity matrix contracted only on one index with itself,
                        # transform to a OneArray(k) element:
                        editor.insert_after(arg_with_ind, OneArray(k))
                        editor.args_with_ind.remove(arg_with_ind)
                        flag = True
                        break
                    elif counted > 2:
                        # Case counted = 2 is a matrix multiplication by identity matrix, skip it.
                        # Case counted > 2 is a multiple contraction,
                        # this is a case where the contraction becomes a diagonalization if the
                        # identity matrix is dropped.
                        continue
                elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
                    ind = arg_with_ind.indices[0]
                    counted = editor.count_args_with_index(ind)
                    if counted > 1:
                        editor.args_with_ind.remove(arg_with_ind)
                        flag = True
                        break
                    else:
                        # This is a trace, skip it as it will be recognized somewhere else:
                        pass
            elif ask(Q.diagonal(arg_with_ind.element)):
                if arg_with_ind.indices == [None, None]:
                    continue
                elif None in arg_with_ind.indices:
                    pass
                elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
                    ind = arg_with_ind.indices[0]
                    counted = editor.count_args_with_index(ind)
                    if counted == 3:
                        # A_ai B_bi D_ii ==> A_ai D_ij B_bj
                        ind_new = editor.get_new_contraction_index()
                        other_args = [
                            j for j in editor.args_with_ind
                            if j != arg_with_ind
                        ]
                        other_args[1].indices = [
                            ind_new if j == ind else j
                            for j in other_args[1].indices
                        ]
                        arg_with_ind.indices = [ind, ind_new]
                        flag = True
                        break

    return editor.to_array_contraction()
def test_arrayexpr_convert_array_to_matrix():

    cg = ArrayContraction(ArrayTensorProduct(M), (0, 1))
    assert convert_array_to_matrix(cg) == Trace(M)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 1), (2, 3))
    assert convert_array_to_matrix(cg) == Trace(M) * Trace(N)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
    assert convert_array_to_matrix(cg) == Trace(M * N)

    cg = ArrayContraction(ArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert convert_array_to_matrix(cg) == Trace(M * N.T)

    cg = convert_matrix_to_array(M * N * P)
    assert convert_array_to_matrix(cg) == M * N * P

    cg = convert_matrix_to_array(M * N.T * P)
    assert convert_array_to_matrix(cg) == M * N.T * P

    cg = ArrayContraction(ArrayTensorProduct(M, N, P, Q), (1, 2), (5, 6))
    assert convert_array_to_matrix(cg) == ArrayTensorProduct(M * N, P * Q)

    cg = ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2))
    assert convert_array_to_matrix(cg) == -2 * M * N

    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    c = MatrixSymbol("c", k, 1)
    cg = PermuteDims(
        ArrayContraction(
            ArrayTensorProduct(
                a,
                ArrayAdd(
                    ArrayTensorProduct(b, c),
                    ArrayTensorProduct(c, b),
                )), (2, 4)), [0, 1, 3, 2])
    assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b)

    za = ZeroArray(m, n)
    assert convert_array_to_matrix(za) == ZeroMatrix(m, n)

    cg = ArrayTensorProduct(3, M)
    assert convert_array_to_matrix(cg) == 3 * M

    # TODO: not yet supported:

    # cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 2, 4), (1, 3, 5))
    #  assert recognize_matrix_expression(cg) == HadamardProduct(M, N, P)

    # cg = ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 3, 4), (1, 2, 5))
    #  assert recognize_matrix_expression(cg) == HadamardProduct(M, N.T, P)

    x = MatrixSymbol("x", k, 1)
    cg = PermuteDims(
        ArrayContraction(
            ArrayTensorProduct(OneArray(1), x, OneArray(1),
                               DiagMatrix(Identity(1))), (0, 5)),
        Permutation(1, 2, 3))
    assert convert_array_to_matrix(cg) == x

    expr = ArrayAdd(M, PermuteDims(M, [1, 0]))
    assert convert_array_to_matrix(expr) == M + Transpose(M)