Example #1
0
def test_TensorManager():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    LorentzH = TensorIndexType('LorentzH', dummy_fmt='LH')
    i, j = tensor_indices('i,j', Lorentz)
    ih, jh = tensor_indices('ih,jh', LorentzH)
    p, q = tensorhead('p q', [Lorentz], [[1]])
    ph, qh = tensorhead('ph qh', [LorentzH], [[1]])

    Gsymbol = Symbol('Gsymbol')
    GHsymbol = Symbol('GHsymbol')
    TensorManager.set_comm(Gsymbol, GHsymbol, 0)
    G = tensorhead('G', [Lorentz], [[1]], Gsymbol)
    assert TensorManager._comm_i2symbol[G.comm] == Gsymbol
    GH = tensorhead('GH', [LorentzH], [[1]], GHsymbol)
    ps = G(i)*p(-i)
    psh = GH(ih)*ph(-ih)
    t = ps + psh
    t1 = t*t
    assert t1 == ps*ps + 2*ps*psh + psh*psh
    qs = G(i)*q(-i)
    qsh = GH(ih)*qh(-ih)
    assert ps*qsh == qsh*ps
    assert ps*qs != qs*ps
    n = TensorManager.comm_symbols2i(Gsymbol)
    assert TensorManager.comm_i2symbol(n) == Gsymbol

    assert GHsymbol in TensorManager._comm_symbols2i
    raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2))
    TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1))
    assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1
    TensorManager.clear()
    assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}]
    assert GHsymbol not in TensorManager._comm_symbols2i
    nh = TensorManager.comm_symbols2i(GHsymbol)
    assert GHsymbol in TensorManager._comm_symbols2i
Example #2
0
def test_simplify_lines():
    i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12 = tensor_indices('i0:13', G.LorentzIndex)
    s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16 = \
       tensor_indices('s0:17', DiracSpinorIndex)

    g = G.LorentzIndex.metric
    Sdelta = DiracSpinorIndex.delta
    t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(i4,s5,-s6)*G(i5,s7,-s8)
    r = G.simplify_lines(t)
    assert r.equals(4*G(i5, s7, -s8)*G(i3, s4, -s0)*G(i4, s0, -s6)*g(i1, i2))

    t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(-i3,s5,-s6)*G(i5,s7,-s8)
    r = G.simplify_lines(t)
    assert r.equals(16*G(i5, s7, -s8)*Sdelta(s4, -s6)*g(i1, i2))
    t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(i4,s5,-s6)*G(i5,s7,-s8)
    r = G.simplify_lines(t)
    assert r.equals(4*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*g(i1, i2))
    t = G(i5,s7,-s8)*G(i6,s9,-s10)*G(i1,s1,-s2)*G(i3,s4,-s5)*G(i2,s2,-s1)*G(i4,s5,-s6)*G(-i6,s10,-s9)
    r = G.simplify_lines(t)
    assert r.equals(64*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*g(i1, i2))
    t = G(i5,s7,-s8)*G(i6,s9,-s10)*G(i1,s1,-s2)*G(i7,s12,-s11)*G(i3,s4,-s5)*\
        G(i2,s2,-s1)*G(i4,s5,-s6)*G(-i6,s10,-s9)*G(-i7,s11,-s13)
    r = G.simplify_lines(t)
    assert r.equals(256*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*\
           g(i1, i2)*Sdelta(s12,-s13))
Example #3
0
def test_get_lines():
    i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13 = \
       tensor_indices('i0:14', G.LorentzIndex)
    s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16 = \
       tensor_indices('s0:17', DiracSpinorIndex)
    t = G(i1,s1,-s2)*G(i2,s3,-s4)*G(i4,s2,-s6)*G(i3,s4,-s3)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[0, 2]], [[1, 3]], [])
    t = G(i1,s1,-s2)*G(i2,s2,-s3)*G(i3,s3,-s4)*G(i4,s4,-s5)*\
        G(i5,s6,-s7)*G(i6,s7,-s8)*G(i7,s8,-s9)*G(i8,s9,-s6)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[0, 1, 2, 3]], [[4, 5, 6, 7]], [])
    t = G(i1,s1,-s2)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)*\
    G(i4,s4,-s5)*G(i5,s6,-s7)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
    G(i8,s9,-s6)*G(i9,s10,-s0)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[0, 2, 3, 4]], [[5, 6, 7, 8], [1, 9]], [])
    t = G(i1,s1,-s2)*G(i11,s12,-s13)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)*\
        G(i4,s4,-s5)*G(i5,s6,-s7)*G(i10,s11,-s12)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
        G(i8,s9,-s6)*G(i9,s10,-s0)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[0, 3, 4, 5], [7, 1]], [[6, 8, 9, 10], [2, 11]], [])
    t = G(i4,s4,-s5)*G(i5,s6,-s7)*G(i10,s11,-s12)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
        G(i8,s9,-s6)*G(i9,s10,-s0)*\
        G(i1,s1,-s2)*G(i11,s12,-s13)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[2, 8], [7, 10, 11, 0]], [[1, 3, 4, 5], [6, 9]], [])
    t = G(i8,s9,-s6)*G(i9,s10,-s0)*G(i4,s4,-s5)*G(i13,s14,-s15)*\
        G(i10,s11,-s12)*G(i1,s1,-s2)*G(i11,s12,-s13)*\
        G(i0,s0,-s10)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
        G(i2,s2,-s3)*G(i12,s13,-s14)*G(i3,s3,-s4)*G(i5,s6,-s7)
    r = get_lines(t, DiracSpinorIndex)
    assert r == ([[4, 6, 11, 3], [5, 10, 12, 2]], [[1, 7], [0, 13, 8, 9]], [])
Example #4
0
def test_indices():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
    assert a.tensortype == Lorentz
    assert a != -a
    A, B = tensorhead('A B', [Lorentz]*2, [[1]*2])
    t = A(a,b)*B(-b,c)
    indices = t.get_indices()
    L_0 = TensorIndex('L_0', Lorentz)
    assert indices == [a, L_0, -L_0, c]
    raises(ValueError, lambda: tensor_indices(3, Lorentz))
    raises(ValueError, lambda: A(a,b,c))
Example #5
0
def test_indices():
    Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
    a, b, c, d = tensor_indices("a,b,c,d", Lorentz)
    assert a.tensortype == Lorentz
    assert a != -a
    A, B = tensorhead("A B", [Lorentz] * 2, [[1] * 2])
    t = A(a, b) * B(-b, c)
    indices = t.get_indices()
    L_0 = TensorIndex("L_0", Lorentz)
    assert indices == [a, L_0, -L_0, c]
    raises(ValueError, lambda: tensor_indices(3, Lorentz))
    raises(ValueError, lambda: A(a, b, c))
Example #6
0
def test_special_eq_ne():
    # test special equality cases:
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
    # A, B symmetric
    A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
    p, q, r = tensorhead('p,q,r', [Lorentz], [[1]])

    t = 0*A(a, b)
    assert t == 0
    assert t == S.Zero

    assert p(i) != A(a, b)
    assert A(a, -a) != A(a, b)
    assert 0*(A(a, b) + B(a, b)) == 0
    assert 0*(A(a, b) + B(a, b)) == S.Zero

    assert 3*(A(a, b) - A(a, b)) == S.Zero

    assert p(i) + q(i) != A(a, b)
    assert p(i) + q(i) != A(a, b) + B(a, b)

    assert p(i) - p(i) == 0
    assert p(i) - p(i) == S.Zero

    assert A(a, b) == A(b, a)
Example #7
0
def test_fun():
    D = Symbol('D')
    Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
    a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz)
    g = Lorentz.metric

    p, q = tensorhead('p q', [Lorentz], [[1]])
    t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d)
    assert t(a,b,c) == t
    assert t - t(b,a,c) == q(c)*p(a)*q(b) - q(c)*p(b)*q(a)
    assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e)
    t1 = t.fun_eval((a,b),(b,a))
    assert t1 == q(c)*p(b)*q(a) + g(a,b)*g(c,d)*q(-d)

    # check that g_{a b; c} = 0
    # example taken from  L. Brewin
    # "A brief introduction to Cadabra" arxiv:0903.2085
    # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c
    dg = tensorhead('dg', [Lorentz]*3, [[1], [1]*2])
    # gamma^a_{b c} is the Christoffel symbol
    gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c))
    # t = g_{a b; c}
    t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c)
    t = t.contract_metric(g, True)
    assert t == 0
    t = q(c)*p(a)*q(b)
    assert t(b,c,d) == q(d)*p(b)*q(c)
Example #8
0
def test_mul():
    from sympy.abc import x
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
    sym = tensorsymmetry([1]*2)
    t = TensMul.from_data(S.One, [], [], [])
    assert str(t) == '1'
    A, B = tensorhead('A B', [Lorentz]*2, [[1]*2])
    t = (1 + x)*A(a, b)
    assert str(t) == '(x + 1)*A(a, b)'
    assert t.types == [Lorentz]
    assert t.rank == 2
    assert t.dum == []
    assert t.coeff == 1 + x
    assert sorted(t.free) == [(a, 0, 0), (b, 1, 0)]
    assert t.components == [A]

    t = A(-b, a)*B(-a, c)*A(-c, d)
    t1 = tensor_mul(*t.split())
    assert t == t(-b, d)
    assert t == t1
    assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], [])

    t = TensMul.from_data(1, [], [], [])
    zsym = tensorsymmetry()
    typ = TensorType([], zsym)
    C = typ('C')
    assert str(C()) == 'C'
    assert str(t) == '1'
    assert t.split()[0] == t
    raises(ValueError, lambda: TIDS.free_dum_from_indices(a, a))
    raises(ValueError, lambda: TIDS.free_dum_from_indices(-a, -a))
    raises(ValueError, lambda: A(a, b)*A(a, c))
    t = A(a, b)*A(-a, c)
    raises(ValueError, lambda: t(a, b, c))
Example #9
0
def test_canonicalize2():
    D = Symbol("D")
    Eucl = TensorIndexType("Eucl", metric=0, dim=D, dummy_fmt="E")
    i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14 = tensor_indices("i0:15", Eucl)
    A = tensorhead("A", [Eucl] * 3, [[3]])

    # two examples from Cvitanovic, Group Theory page 59
    # of identities for antisymmetric tensors of rank 3
    # contracted according to the Kuratowski graph  eq.(6.59)
    t = A(i0, i1, i2) * A(-i1, i3, i4) * A(-i3, i7, i5) * A(-i2, -i5, i6) * A(-i4, -i6, i8)
    t1 = t.canon_bp()
    assert t1 == 0

    # eq.(6.60)
    # t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*
    #    A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14)
    t = (
        A(i0, i1, i2)
        * A(-i1, i3, i4)
        * A(-i2, i5, i6)
        * A(-i3, i7, i8)
        * A(-i6, -i7, i9)
        * A(-i8, i10, i13)
        * A(-i5, -i10, i11)
        * A(-i4, -i11, i12)
        * A(-i9, -i12, i14)
    )
    t1 = t.canon_bp()
    assert t1 == 0
Example #10
0
def test_riemann_invariants():
    Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
    d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = tensor_indices("d0:12", Lorentz)
    # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1]
    # T_c = -R^{d0 d1}_{d0 d1}
    R = tensorhead("R", [Lorentz] * 4, [[2, 2]])
    t = R(d0, d1, -d1, -d0)
    tc = t.canon_bp()
    assert str(tc) == "-R(L_0, L_1, -L_0, -L_1)"

    # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} *
    # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10}
    # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22,
    #        17,19,21<F10,23, 24,25]
    # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} *
    # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11}

    t = (
        R(-d11, d1, -d0, d5)
        * R(d6, d4, d0, -d5)
        * R(-d7, -d2, -d8, -d9)
        * R(-d10, -d3, -d6, -d4)
        * R(d2, d7, d11, -d1)
        * R(d8, d9, d3, d10)
    )
    tc = t.canon_bp()
    assert (
        str(tc)
        == "R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)"
    )
Example #11
0
def test_pprint():
    Lorentz = TensorIndexType('Lorentz')
    i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)
    A = tensorhead('A', [Lorentz], [[1]])

    assert pretty(A) == "A(Lorentz)"
    assert pretty(A(i0)) == "A(i0)"
Example #12
0
def test_tensor_element():
    L = TensorIndexType("L")
    i, j, k, l, m, n = tensor_indices("i j k l m n", L)

    A = tensorhead("A", [L, L], [[1], [1]])

    a = A(i, j)

    assert isinstance(TensorElement(a, {}), Tensor)
    assert isinstance(TensorElement(a, {k: 1}), Tensor)

    te1 = TensorElement(a, {Symbol("i"): 1})
    assert te1.free == [(j, 0)]
    assert te1.get_free_indices() == [j]
    assert te1.dum == []

    te2 = TensorElement(a, {i: 1})
    assert te2.free == [(j, 0)]
    assert te2.get_free_indices() == [j]
    assert te2.dum == []

    assert te1 == te2

    array = Array([[1, 2], [3, 4]])
    assert te1.replace_with_arrays({A(i, j): array}, [j]) == array[1, :]
Example #13
0
def test_TensorIndexType():
    D = Symbol('D')
    G = Metric('g', False)
    Lorentz = TensorIndexType('Lorentz', metric=G, dim=D, dummy_fmt='L')
    m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz)
    sym2 = tensorsymmetry([1]*2)
    sym2n = tensorsymmetry(*get_symmetric_group_sgs(2))
    assert sym2 == sym2n
    g = Lorentz.metric
    assert str(g) == 'g(Lorentz,Lorentz)'
    assert Lorentz.eps_dim == Lorentz.dim

    TSpace = TensorIndexType('TSpace')
    i0, i1 = tensor_indices('i0 i1', TSpace)
    g = TSpace.metric
    A = tensorhead('A', [TSpace]*2, [[1]*2])
    assert  str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)'
Example #14
0
def test_TensorIndexType():
    D = Symbol("D")
    G = Metric("g", False)
    Lorentz = TensorIndexType("Lorentz", metric=G, dim=D, dummy_fmt="L")
    m0, m1, m2, m3, m4 = tensor_indices("m0:5", Lorentz)
    sym2 = tensorsymmetry([1] * 2)
    sym2n = tensorsymmetry(*get_symmetric_group_sgs(2))
    assert sym2 == sym2n
    g = Lorentz.metric
    assert str(g) == "g(Lorentz,Lorentz)"
    assert Lorentz.eps_dim == Lorentz.dim

    TSpace = TensorIndexType("TSpace")
    i0, i1 = tensor_indices("i0 i1", TSpace)
    g = TSpace.metric
    A = tensorhead("A", [TSpace] * 2, [[1] * 2])
    assert str(A(i0, -i0).canon_bp()) == "A(TSpace_0, -TSpace_0)"
Example #15
0
def test_bug_correction_tensor_indices():
    # to make sure that tensor_indices does not return a list if creating
    # only one index:
    from sympy.tensor.tensor import tensor_indices, TensorIndexType, TensorIndex
    A = TensorIndexType("A")
    i = tensor_indices('i', A)
    assert not isinstance(i, (tuple, list))
    assert isinstance(i, TensorIndex)
Example #16
0
def test_contract_automatrix_and_data():
    numpy = import_module('numpy')
    if numpy is None:
        return

    L = TensorIndexType('L')
    S = TensorIndexType('S')
    G = tensorhead('G', [L, S, S], [[1] * 3], matrix_behavior=True)

    def G_data():
        G.data = [[[1]]]
    raises(ValueError, G_data)
    L.data = [1, -1]
    raises(ValueError, G_data)
    S.data = [[1, 0], [0, 2]]
    G.data = [
        [[1, 2],
         [3, 4]],
        [[5, 6],
         [7, 8]]
    ]
    m0, m1, m2 = tensor_indices('m0:3', L)
    s0, s1, s2 = tensor_indices('s0:3', S)

    assert (G(-m0).data == numpy.array([
       [[1, 4],
        [3, 8]],
       [[-5, -12],
        [-7, -16]]
    ])).all()

    (G(m0) * G(-m0)).data
    G(m0, s0, -s1).data

    c1 = G(m0, s0, -s1)*G(-m0, s1, -s2)
    c2 = G(m0) * G(-m0)

    assert (c1.data == c2.data).all()

    del L.data
    del S.data
    del G.data
    assert L.data is None
    assert S.data is None
    assert G.data is None
Example #17
0
def test_riemann_cyclic_replace():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    m0, m1, m2, m3 = tensor_indices('m:4', Lorentz)
    symr = tensorsymmetry([2, 2])
    R = tensorhead('R', [Lorentz]*4, [[2, 2]])
    t = R(m0, m2, m1, m3)
    t1 = riemann_cyclic_replace(t)
    t1a = -S.One/3*R(m0, m3, m2, m1) + S.One/3*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3)
    assert t1 == t1a
Example #18
0
def test_TensorHead():
    assert TensAdd() == 0
    # simple example of algebraic expression
    Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
    a, b = tensor_indices("a,b", Lorentz)
    # A, B symmetric
    A = tensorhead("A", [Lorentz] * 2, [[1] * 2])
    assert A.rank == 2
    assert A.symmetry == tensorsymmetry([1] * 2)
Example #19
0
def test_TensorHead():
    assert TensAdd() == 0
    # simple example of algebraic expression
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a,b = tensor_indices('a,b', Lorentz)
    # A, B symmetric
    A = tensorhead('A', [Lorentz]*2, [[1]*2])
    assert A.rank == 2
    assert A.symmetry == tensorsymmetry([1]*2)
Example #20
0
def test_contract_metric1():
    D = Symbol('D')
    Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
    a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
    g = Lorentz.metric
    p = tensorhead('p', [Lorentz], [[1]])
    t = g(a, b)*p(-b)
    t1 = t.contract_metric(g)
    assert t1 == p(a)
    A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])

    # case with g with all free indices
    t1 = A(a,b)*B(-b,c)*g(d, e)
    t2 = t1.contract_metric(g)
    assert t1 == t2

    # case of g(d, -d)
    t1 = A(a,b)*B(-b,c)*g(-d, d)
    t2 = t1.contract_metric(g)
    assert t2 == D*A(a, d)*B(-d, c)

    # g with one free index
    t1 = A(a,b)*B(-b,-c)*g(c, d)
    t2 = t1.contract_metric(g)
    assert t2 == A(a, c)*B(-c, d)

    # g with both indices contracted with another tensor
    t1 = A(a,b)*B(-b,-c)*g(c, -a)
    t2 = t1.contract_metric(g)
    assert t2 == A(a, b)*B(-b, -a)

    t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d)
    t2 = t1.contract_metric(g)
    t2 = t2.contract_metric(g)
    assert t2 == A(a,b)*B(-b,-a)

    t1 = A(a,b)*g(-a,-b)
    t2 = t1.contract_metric(g)
    assert t2 == A(a, -a)
    assert not t2.free
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, b = tensor_indices('a,b', Lorentz)
    g = Lorentz.metric
    raises(ValueError, lambda: g(a, -a).contract_metric(g)) # no dim
Example #21
0
def test_hash():
    D = Symbol('D')
    Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
    a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz)
    g = Lorentz.metric

    p, q = tensorhead('p q', [Lorentz], [[1]])
    p_type = p.args[1]
    t1 = p(a)*q(b)
    t2 = p(a)*p(b)
    assert hash(t1) != hash(t2)
    t3 = p(a)*p(b) + g(a,b)
    t4 = p(a)*p(b) - g(a,b)
    assert hash(t3) != hash(t4)

    assert a.func(*a.args) == a
    assert Lorentz.func(*Lorentz.args) == Lorentz
    assert g.func(*g.args) == g
    assert p.func(*p.args) == p
    assert p_type.func(*p_type.args) == p_type
    assert p(a).func(*(p(a)).args) == p(a)
    assert t1.func(*t1.args) == t1
    assert t2.func(*t2.args) == t2
    assert t3.func(*t3.args) == t3
    assert t4.func(*t4.args) == t4

    assert hash(a.func(*a.args)) == hash(a)
    assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz)
    assert hash(g.func(*g.args)) == hash(g)
    assert hash(p.func(*p.args)) == hash(p)
    assert hash(p_type.func(*p_type.args)) == hash(p_type)
    assert hash(p(a).func(*(p(a)).args)) == hash(p(a))
    assert hash(t1.func(*t1.args)) == hash(t1)
    assert hash(t2.func(*t2.args)) == hash(t2)
    assert hash(t3.func(*t3.args)) == hash(t3)
    assert hash(t4.func(*t4.args)) == hash(t4)

    def check_all(obj):
        return all([isinstance(_, Basic) for _ in obj.args])

    assert check_all(a)
    assert check_all(Lorentz)
    assert check_all(g)
    assert check_all(p)
    assert check_all(p_type)
    assert check_all(p(a))
    assert check_all(t1)
    assert check_all(t2)
    assert check_all(t3)
    assert check_all(t4)

    tsymmetry = tensorsymmetry([2], [1], [1, 1, 1])

    assert tsymmetry.func(*tsymmetry.args) == tsymmetry
    assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry)
    assert check_all(tsymmetry)
Example #22
0
def test_hash():
    D = Symbol('D')
    Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
    a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz)
    g = Lorentz.metric

    p, q = tensorhead('p q', [Lorentz], [[1]])
    t1 = p(a)*q(b)
    t2 = p(a)*p(b)
    assert hash(t1) != hash(t2)
    t3 = p(a)*p(b) + g(a,b)
    t4 = p(a)*p(b) - g(a,b)
    assert hash(t3) != hash(t4)
Example #23
0
def test_add2():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    m, n, p, q = tensor_indices('m,n,p,q', Lorentz)
    R = tensorhead('R', [Lorentz]*4, [[2, 2]])
    A = tensorhead('A', [Lorentz]*3, [[3]])
    t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q)
    t2 = t1*A(-n, -p, -q)
    assert t2 == 0
    t1 = S(2)/3*R(m,n,p,q) - S(1)/3*R(m,q,n,p) + S(1)/3*R(m,p,n,q)
    t2 = t1*A(-n, -p, -q)
    assert t2 == 0
    t = A(m, -m, n) + A(n, p, -p)
    assert t == 0
Example #24
0
def test_add2():
    Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
    m, n, p, q = tensor_indices("m,n,p,q", Lorentz)
    R = tensorhead("R", [Lorentz] * 4, [[2, 2]])
    A = tensorhead("A", [Lorentz] * 3, [[3]])
    t1 = 2 * R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q)
    t2 = t1 * A(-n, -p, -q)
    assert t2 == 0
    t1 = S(2) / 3 * R(m, n, p, q) - S(1) / 3 * R(m, q, n, p) + S(1) / 3 * R(m, p, n, q)
    t2 = t1 * A(-n, -p, -q)
    assert t2 == 0
    t = A(m, -m, n) + A(n, p, -p)
    assert t == 0
Example #25
0
def test_div():
    Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
    m0, m1, m2, m3 = tensor_indices("m0:4", Lorentz)
    R = tensorhead("R", [Lorentz] * 4, [[2, 2]])
    t = R(m0, m1, -m1, m3)
    t1 = t / S(4)
    assert str(t1) == "1/4*R(m0, L_0, -L_0, m3)"
    t = t.canon_bp()
    assert not t1._is_canon_bp
    t1 = t * 4
    assert t1._is_canon_bp
    t1 = t1 / 4
    assert t1._is_canon_bp
Example #26
0
def test_div():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    m0,m1,m2,m3 = tensor_indices('m0:4', Lorentz)
    R = tensorhead('R', [Lorentz]*4, [[2, 2]])
    t = R(m0,m1,-m1,m3)
    t1 = t/S(4)
    assert str(t1) == '1/4*R(m0, L_0, -L_0, m3)'
    t = t.canon_bp()
    assert not t1._is_canon_bp
    t1 = t*4
    assert t1._is_canon_bp
    t1 = t1/4
    assert t1._is_canon_bp
Example #27
0
def test_canonicalize3():
    D = Symbol("D")
    Spinor = TensorIndexType("Spinor", dim=D, metric=True, dummy_fmt="S")
    a0, a1, a2, a3, a4 = tensor_indices("a0:5", Spinor)
    C = Spinor.metric
    chi, psi = tensorhead("chi,psi", [Spinor], [[1]], 1)

    t = chi(a1) * psi(a0)
    t1 = t.canon_bp()
    assert t1 == t

    t = psi(a1) * chi(a0)
    t1 = t.canon_bp()
    assert t1 == -chi(a0) * psi(a1)
Example #28
0
def test_canonicalize3():
    D = Symbol('D')
    Spinor = TensorIndexType('Spinor', dim=D, metric=True, dummy_fmt='S')
    a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor)
    C = Spinor.metric
    chi, psi = tensorhead('chi,psi', [Spinor], [[1]], 1)

    t = chi(a1)*psi(a0)
    t1 = t.canon_bp()
    assert t1 == t

    t = psi(a1)*chi(a0)
    t1 = t.canon_bp()
    assert t1 == -chi(a0)*psi(a1)
Example #29
0
def test_riemann_products():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz)
    a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz)
    a, b = tensor_indices('a,b', Lorentz)
    R = tensorhead('R', [Lorentz]*4, [[2, 2]])
    # R^{a b d0}_d0 = 0
    t = R(a, b, d0, -d0)
    tc = t.canon_bp()
    assert tc == 0

    # R^{d0 b a}_d0
    # T_c = -R^{a d0 b}_d0
    t = R(d0, b, a, -d0)
    tc = t.canon_bp()
    assert str(tc) == '-R(a, L_0, b, -L_0)'

    # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2]
    # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2}
    t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2)
    tc = t.canon_bp()
    assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)'

    # A symmetric commuting
    # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5}
    # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15]
    # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6}
    V = tensorhead('V', [Lorentz]*2, [[1]*2])
    t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5)
    tc = t.canon_bp()
    assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)'

    # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1}
    # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2}
    t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1)
    tc = t.canon_bp()
    assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)'
Example #30
0
def test_gamma_matrix_class():
    i, j, k = tensor_indices('i,j,k', G.LorentzIndex)

    # define another type of TensorHead to see if exprs are correctly handled:
    A = tensorhead('A', [G.LorentzIndex], [[1]])

    t = A(k)*G(i)*G(-i)
    ts = simplify(t)
    assert _is_tensor_eq(ts, 4*A(k)*DiracSpinorIndex.delta(DiracSpinorIndex.auto_left, -DiracSpinorIndex.auto_right))

    t = G(i)*A(k)*G(j)
    ts = simplify(t)
    assert _is_tensor_eq(ts, A(k)*G(i)*G(j))

    execute_gamma_simplify_tests_for_function(simplify, D=4)
Example #31
0
def test_contract_metric2():
    D = Symbol('D')
    Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
    a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz)
    g = Lorentz.metric
    p, q = tensorhead('p,q', [Lorentz], [[1]])

    t1 = g(a, b) * p(c) * p(-c)
    t2 = 3 * g(-a, -b) * q(c) * q(-c)
    t = t1 * t2
    t = t.contract_metric(g)
    t = t.contract_metric(g)
    assert t == 3 * D * p(a) * p(-a) * q(b) * q(-b)
    t1 = g(a, b) * p(c) * p(-c)
    t2 = 3 * q(-a) * q(-b)
    t = t1 * t2
    t = t.contract_metric(g)
    t = t.canon_bp()
    assert t == 3 * p(a) * p(-a) * q(b) * q(-b)

    t1 = 2 * g(a, b) * p(c) * p(-c)
    t2 = -3 * g(-a, -b) * q(c) * q(-c)
    t = t1 * t2
    t = t.contract_metric(g)
    t = t.contract_metric(g)
    t = 6 * g(a, b) * g(-a, -b) * p(c) * p(-c) * q(d) * q(-d)
    t = t.contract_metric(g)
    t = t.contract_metric(g)

    t1 = 2 * g(a, b) * p(c) * p(-c)
    t2 = q(-a) * q(-b) + 3 * g(-a, -b) * q(c) * q(-c)
    t = t1 * t2
    t = t.contract_metric(g)
    assert t == (2 + 6 * D) * p(a) * p(-a) * q(b) * q(-b)

    t1 = p(a) * p(b) + p(a) * q(b) + 2 * g(a, b) * p(c) * p(-c)
    t2 = q(-a) * q(-b) - g(-a, -b) * q(c) * q(-c)
    t = t1 * t2
    t = t.contract_metric(g)
    t1 = (1 -
          2 * D) * p(a) * p(-a) * q(b) * q(-b) + p(a) * q(-a) * p(b) * q(-b)
    assert t == t1

    t = g(a, b) * g(c, d) * g(-b, -c)
    t1 = t.contract_metric(g)
    t1 = t1.canon_bp()
    assert t1 == g(a, c) * g(d, -c)

    t2 = t1.contract_metric(g)
    assert t2 == g(a, d)

    t1 = t.contract_metric(g, True)
    assert t1 == g(a, d)

    t1 = g(a, b) * g(c, d) + g(a, c) * g(b, d) + g(a, d) * g(b, c)
    t2 = t1.substitute_indices((a, -a), (b, -b), (c, -c), (d, -d))
    t = t1 * t2
    t3 = t.contract_metric(g)
    t3 = t3.contract_metric(g)
    t3 = t3.contract_metric(g)
    assert t3.equals(3 * D**2 + 6 * D)
    t = t.contract_metric(g, True)
    assert t3.equals(3 * D**2 + 6 * D)

    t = 2 * p(a) * g(b, -b)
    t1 = t.contract_metric(g)
    assert t1.equals(2 * D * p(a))

    t = 2 * p(a) * g(b, -a)
    t1 = t.contract_metric(g)
    assert t1 == 2 * p(b)

    M = Symbol('M')
    t = (p(a) * p(b) + g(a, b) * M**2) * g(-a, -b) - D * M**2
    t1 = t.contract_metric(g)
    assert t1 == p(a) * p(-a)

    v = [p(a), q(b), p(c)]
    v1 = tensorlist_contract_metric(v, g(-a, -b))
    assert v1 == [p(-b), q(b), p(c)]
    v = [p(a), q(b), p(c)]
    v1 = tensorlist_contract_metric(v, g(d, e))
    assert v1 == [p(a), q(b), p(c), g(d, e)]

    A = tensorhead('A', [Lorentz] * 2, [[1] * 2])
    t = A(a, b) * p(L_0) * g(-a, -b)
    t1 = t.contract_metric(g)
    assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)'
Example #32
0
def test_canonicalize1():
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
      tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz)
    sym1 = tensorsymmetry([1])
    base3, gens3 = get_symmetric_group_sgs(3)
    sym2 = tensorsymmetry([1] * 2)
    sym2a = tensorsymmetry([2])
    sym3 = tensorsymmetry([1] * 3)
    sym3a = tensorsymmetry([3])

    # A_d0*A^d0; ord = [d0,-d0]
    # T_c = A^d0*A_d0
    S1 = TensorType([Lorentz], sym1)
    A = S1('A')
    t = A(-d0) * A(d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0)*A(-L_0)'

    # A commuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
    # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2
    t = A(-d0) * A(-d1) * A(-d2) * A(d2) * A(d1) * A(d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)'

    # A anticommuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
    # T_c 0
    A = S1('A', 1)
    t = A(-d0) * A(-d1) * A(-d2) * A(d2) * A(d1) * A(d0)
    tc = t.canon_bp()
    assert tc == 0

    # A commuting symmetric
    # A^{d0 b}*A^a_d1*A^d1_d0
    # T_c = A^{a d0}*A^{b d1}*A_{d0 d1}
    S2 = TensorType([Lorentz] * 2, sym2)
    A = S2('A')
    t = A(d0, b) * A(a, -d1) * A(d1, -d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)'

    # A, B commuting symmetric
    # A^{d0 b}*A^d1_d0*B^a_d1
    # T_c = A^{b d0}*A_d0^d1*B^a_d1
    B = S2('B')
    t = A(d0, b) * A(d1, -d0) * B(a, -d1)
    tc = t.canon_bp()
    assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)'

    # A commuting symmetric
    # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1]
    # T_c = A^{a d0 d1}*A^{b}_{d0 d1}
    S3 = TensorType([Lorentz] * 3, sym3)
    A = S3('A')
    t = A(d1, d0, b) * A(a, -d1, -d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)'

    # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0
    # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3}
    t = A(d3, d0, d2) * A(a0, -d1, -d2) * A(d1, -d3, a1) * A(a2, a3, -d0)
    tc = t.canon_bp()
    assert str(
        tc
    ) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)'

    # A commuting symmetric, B antisymmetric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # in this esxample and in the next three,
    # renaming dummy indices and using symmetry of A,
    # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    # can = 0
    S2a = TensorType([Lorentz] * 2, sym2a)
    A = S3('A')
    B = S2a('B')
    t = A(d0, d1, d2) * A(-d2, -d3, -d1) * B(-d0, d3)
    tc = t.canon_bp()
    assert tc == 0

    # A anticommuting symmetric, B anticommuting
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    A = S3('A', 1)
    B = S2a('B')
    t = A(d0, d1, d2) * A(-d2, -d3, -d1) * B(-d0, d3)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)'

    # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    Spinor = TensorIndexType('Spinor', metric=1, dummy_fmt='S')
    a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
      tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor)
    S3 = TensorType([Spinor] * 3, sym3)
    S2a = TensorType([Spinor] * 2, sym2a)
    A = S3('A', 1)
    B = S2a('B')
    t = A(d0, d1, d2) * A(-d2, -d3, -d1) * B(-d0, d3)
    tc = t.canon_bp()
    assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)'

    # A anticommuting symmetric, B antisymmetric anticommuting,
    # no metric symmetry
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    Mat = TensorIndexType('Mat', metric=None, dummy_fmt='M')
    a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
      tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat)
    S3 = TensorType([Mat] * 3, sym3)
    S2a = TensorType([Mat] * 2, sym2a)
    A = S3('A', 1)
    B = S2a('B')
    t = A(d0, d1, d2) * A(-d2, -d3, -d1) * B(-d0, d3)
    tc = t.canon_bp()
    assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)'

    # Gamma anticommuting
    # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha}
    # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu}
    S1 = TensorType([Lorentz], sym1)
    S2a = TensorType([Lorentz] * 2, sym2a)
    S3a = TensorType([Lorentz] * 3, sym3a)
    alpha, beta, gamma, mu, nu, rho = \
      tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz)
    Gamma = S1('Gamma', 2)
    Gamma2 = S2a('Gamma', 2)
    Gamma3 = S3a('Gamma', 2)
    t = Gamma2(-mu, -nu) * Gamma(rho) * Gamma3(nu, mu, alpha)
    tc = t.canon_bp()
    assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)'

    # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha}
    # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu}
    t = Gamma2(mu, nu) * Gamma2(beta, gamma) * Gamma(-rho) * Gamma3(
        alpha, -mu, -nu)
    tc = t.canon_bp()
    assert str(
        tc
    ) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)'

    # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry
    # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b}
    # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15]
    # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e}
    Flavor = TensorIndexType('Flavor', dummy_fmt='F')
    a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor)
    mu, nu = tensor_indices('mu,nu', Lorentz)
    sym_f = tensorsymmetry([1], [2])
    S_f = TensorType([Flavor] * 3, sym_f)
    sym_A = tensorsymmetry([1], [1])
    S_A = TensorType([Lorentz, Flavor], sym_A)
    f = S_f('f')
    A = S_A('A')
    t = f(c, -d, -a) * f(-c, -e, -b) * A(-mu, d) * A(-nu, a) * A(nu, e) * A(
        mu, b)
    tc = t.canon_bp()
    assert str(
        tc
    ) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)'
Example #33
0
def test_add1():
    assert TensAdd() == 0
    # simple example of algebraic expression
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
    # A, B symmetric
    A, B = tensorhead('A,B', [Lorentz] * 2, [[1] * 2])
    t1 = A(b, -d0) * B(d0, a)
    assert TensAdd(t1).equals(t1)
    t2a = B(d0, a) + A(d0, a)
    t2 = A(b, -d0) * t2a
    assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)'
    t2b = t2 + t1
    assert str(t2b) == '2*A(b, L_0)*B(a, -L_0) + A(a, L_0)*A(b, -L_0)'
    p, q, r = tensorhead('p,q,r', [Lorentz], [[1]])
    t = q(d0) * 2
    assert str(t) == '2*q(d0)'
    t = 2 * q(d0)
    assert str(t) == '2*q(d0)'
    t1 = p(d0) + 2 * q(d0)
    assert str(t1) == '2*q(d0) + p(d0)'
    t2 = p(-d0) + 2 * q(-d0)
    assert str(t2) == '2*q(-d0) + p(-d0)'
    t1 = p(d0)
    t3 = t1 * t2
    assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)'
    t3 = t2 * t1
    assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)'
    t1 = p(d0) + 2 * q(d0)
    t3 = t1 * t2
    assert str(t3) == '4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0) + p(L_0)*p(-L_0)'
    t1 = p(d0) - 2 * q(d0)
    assert str(t1) == '-2*q(d0) + p(d0)'
    t2 = p(-d0) + 2 * q(-d0)
    t3 = t1 * t2
    assert t3 == p(d0) * p(-d0) - 4 * q(d0) * q(-d0)
    t = p(i) * p(j) * (p(k) + q(k)) + p(i) * (p(j) + q(j)) * (p(k) - 3 * q(k))
    assert t == 2 * p(i) * p(j) * p(k) - 2 * p(i) * p(j) * q(k) + p(i) * p(
        k) * q(j) - 3 * p(i) * q(j) * q(k)
    t1 = (p(i) + q(i) + 2 * r(i)) * (p(j) - q(j))
    t2 = (p(j) + q(j) + 2 * r(j)) * (p(i) - q(i))
    t = t1 + t2
    assert t == 2 * p(i) * p(j) + 2 * p(i) * r(j) + 2 * p(j) * r(i) - 2 * q(
        i) * q(j) - 2 * q(i) * r(j) - 2 * q(j) * r(i)
    t = p(i) * q(j) / 2
    assert 2 * t == p(i) * q(j)
    t = (p(i) + q(i)) / 2
    assert 2 * t == p(i) + q(i)

    t = S.One - p(i) * p(-i)
    assert (t + p(-j) * p(j)).equals(1)
    t = S.One + p(i) * p(-i)
    assert (t - p(-j) * p(j)).equals(1)

    t = A(a, b) + B(a, b)
    assert t.rank == 2
    t1 = t - A(a, b) - B(a, b)
    assert t1 == 0
    t = 1 - (A(a, -a) + B(a, -a))
    t1 = 1 + (A(a, -a) + B(a, -a))
    assert (t + t1).equals(2)
    t2 = 1 + A(a, -a)
    assert t1 != t2
    assert t2 != TensMul.from_data(0, [], [], [])
    t = p(i) + q(i)
    raises(ValueError, lambda: t(i, j))
Example #34
0
### TEST VALUED TENSORS ###

numpy = import_module('numpy')

if numpy:
    minkowski = Matrix((
        (1, 0, 0, 0),
        (0, -1, 0, 0),
        (0, 0, -1, 0),
        (0, 0, 0, -1),
    ))
    Lorentz = TensorIndexType('Lorentz', dim=4)
    Lorentz.data = minkowski

    i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)

    E, px, py, pz = symbols('E px py pz')
    A = tensorhead('A', [Lorentz], [[1]])
    A.data = [E, px, py, pz]
    B = tensorhead('B', [Lorentz], [[1]], 'Gcomm')
    B.data = range(4)
    AB = tensorhead("AB", [Lorentz] * 2, [[1]] * 2)
    AB.data = minkowski

    ba_matrix = Matrix((
        (1, 2, 3, 4),
        (5, 6, 7, 8),
        (9, 0, -1, -2),
        (-3, -4, -5, -6),
    ))
Example #35
0
def test_canonicalize_no_slot_sym():
    # A_d0 * B^d0; T_c = A^d0*B_d0
    Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
    a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz)
    sym1 = tensorsymmetry([1])
    S1 = TensorType([Lorentz], sym1)
    A, B = S1('A,B')
    t = A(-d0) * B(d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0)*B(-L_0)'

    # A^a * B^b;  T_c = T
    t = A(a) * B(b)
    tc = t.canon_bp()
    assert tc == t
    # B^b * A^a
    t1 = B(b) * A(a)
    tc = t1.canon_bp()
    assert str(tc) == 'A(a)*B(b)'

    # A symmetric
    # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0}
    sym2 = tensorsymmetry([1] * 2)
    S2 = TensorType([Lorentz] * 2, sym2)
    A = S2('A')
    t = A(b, -d0) * A(d0, a)
    tc = t.canon_bp()
    assert str(tc) == 'A(a, L_0)*A(b, -L_0)'

    # A^{d1}_{d0}*B^d0*C_d1
    # T_c = A^{d0 d1}*B_d0*C_d1
    B, C = S1('B,C')
    t = A(d1, -d0) * B(d0) * C(-d1)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)'

    # A without symmetry
    # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5]
    # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5]
    nsym2 = tensorsymmetry([1], [1])
    NS2 = TensorType([Lorentz] * 2, nsym2)
    A = NS2('A')
    B, C = S1('B, C')
    t = A(d1, -d0) * B(d0) * C(-d1)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)'

    # A, B without symmetry
    # A^{d1}_{d0}*B_{d1}^{d0}
    # T_c = A^{d0 d1}*B_{d0 d1}
    B = NS2('B')
    t = A(d1, -d0) * B(-d1, d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)'
    # A_{d0}^{d1}*B_{d1}^{d0}
    # T_c = A^{d0 d1}*B_{d1 d0}
    t = A(-d0, d1) * B(-d1, d0)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)'

    # A, B, C without symmetry
    # A^{d1 d0}*B_{a d0}*C_{d1 b}
    # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b}
    C = NS2('C')
    t = A(d1, d0) * B(-a, -d0) * C(-d1, -b)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)'

    # A symmetric, B and C without symmetry
    # A^{d1 d0}*B_{a d0}*C_{d1 b}
    # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b}
    A = S2('A')
    t = A(d1, d0) * B(-a, -d0) * C(-d1, -b)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)'

    # A and C symmetric, B without symmetry
    # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1]
    # T_c = A^{d0 d1}*B_{a d0}*C_{b d1}
    C = S2('C')
    t = A(d1, d0) * B(-a, -d0) * C(-d1, -b)
    tc = t.canon_bp()
    assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)'