def roots_quintic(f): """ Calulate exact roots of a solvable quintic """ result = [] coeff_5, coeff_4, p, q, r, s = f.all_coeffs() # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s if coeff_4: return result if coeff_5 != 1: l = [p / coeff_5, q / coeff_5, r / coeff_5, s / coeff_5] if not all(coeff.is_Rational for coeff in l): return result f = Poly(f / coeff_5) quintic = PolyQuintic(f) # Eqn standardized. Algo for solving starts here if not f.is_irreducible: return result f20 = quintic.f20 # Check if f20 has linear factors over domain Z if f20.is_irreducible: return result # Now, we know that f is solvable for _factor in f20.factor_list()[1]: if _factor[0].is_linear: theta = _factor[0].root(0) break d = discriminant(f) delta = sqrt(d) # zeta = a fifth root of unity zeta1, zeta2, zeta3, zeta4 = quintic.zeta T = quintic.T(theta, d) tol = S(1e-10) alpha = T[1] + T[2] * delta alpha_bar = T[1] - T[2] * delta beta = T[3] + T[4] * delta beta_bar = T[3] - T[4] * delta disc = alpha**2 - 4 * beta disc_bar = alpha_bar**2 - 4 * beta_bar l0 = quintic.l0(theta) l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) order = quintic.order(theta, d) test = (order * delta.n()) - ((l1.n() - l4.n()) * (l2.n() - l3.n())) # Comparing floats # Problems importing on top from sympy.utilities.randtest import comp if not comp(test, 0, tol): l2, l3 = l3, l2 # Now we have correct order of l's R1 = l0 + l1 * zeta1 + l2 * zeta2 + l3 * zeta3 + l4 * zeta4 R2 = l0 + l3 * zeta1 + l1 * zeta2 + l4 * zeta3 + l2 * zeta4 R3 = l0 + l2 * zeta1 + l4 * zeta2 + l1 * zeta3 + l3 * zeta4 R4 = l0 + l4 * zeta1 + l3 * zeta2 + l2 * zeta3 + l1 * zeta4 Res = [None, [None] * 5, [None] * 5, [None] * 5, [None] * 5] Res_n = [None, [None] * 5, [None] * 5, [None] * 5, [None] * 5] sol = Symbol('sol') # Simplifying improves performace a lot for exact expressions R1 = _quintic_simplify(R1) R2 = _quintic_simplify(R2) R3 = _quintic_simplify(R3) R4 = _quintic_simplify(R4) # Solve imported here. Causing problems if imported as 'solve' # and hence the changed name from sympy.solvers.solvers import solve as _solve a, b = symbols('a b', cls=Dummy) _sol = _solve(sol**5 - a - I * b, sol) for i in range(5): _sol[i] = factor(_sol[i]) R1 = R1.as_real_imag() R2 = R2.as_real_imag() R3 = R3.as_real_imag() R4 = R4.as_real_imag() for i, root in enumerate(_sol): Res[1][i] = _quintic_simplify(root.subs({a: R1[0], b: R1[1]})) Res[2][i] = _quintic_simplify(root.subs({a: R2[0], b: R2[1]})) Res[3][i] = _quintic_simplify(root.subs({a: R3[0], b: R3[1]})) Res[4][i] = _quintic_simplify(root.subs({a: R4[0], b: R4[1]})) for i in range(1, 5): for j in range(5): Res_n[i][j] = Res[i][j].n() Res[i][j] = _quintic_simplify(Res[i][j]) r1 = Res[1][0] r1_n = Res_n[1][0] for i in range(5): if comp(im(r1_n * Res_n[4][i]), 0, tol): r4 = Res[4][i] break u, v = quintic.uv(theta, d) sqrt5 = math.sqrt(5) # Now we have various Res values. Each will be a list of five # values. We have to pick one r value from those five for each Res u, v = quintic.uv(theta, d) testplus = (u + v * delta * sqrt(5)).n() testminus = (u - v * delta * sqrt(5)).n() # Evaluated numbers suffixed with _n # We will use evaluated numbers for calculation. Much faster. r4_n = r4.n() r2 = r3 = None for i in range(5): r2temp_n = Res_n[2][i] for j in range(5): # Again storing away the exact number and using # evaluated numbers in computations r3temp_n = Res_n[3][j] if (comp(r1_n * r2temp_n**2 + r4_n * r3temp_n**2 - testplus, 0, tol) and comp( r3temp_n * r1_n**2 + r2temp_n * r4_n**2 - testminus, 0, tol)): r2 = Res[2][i] r3 = Res[3][j] break if r2: break # Now, we have r's so we can get roots x1 = (r1 + r2 + r3 + r4) / 5 x2 = (r1 * zeta4 + r2 * zeta3 + r3 * zeta2 + r4 * zeta1) / 5 x3 = (r1 * zeta3 + r2 * zeta1 + r3 * zeta4 + r4 * zeta2) / 5 x4 = (r1 * zeta2 + r2 * zeta4 + r3 * zeta1 + r4 * zeta3) / 5 x5 = (r1 * zeta1 + r2 * zeta2 + r3 * zeta3 + r4 * zeta4) / 5 result = [x1, x2, x3, x4, x5] # Now check if solutions are distinct result_n = [] for root in result: result_n.append(root.n(5)) result_n = sorted(result_n, key=default_sort_key) prev_entry = None for r in result_n: if r == prev_entry: # Roots are identical. Abort. Return [] # and fall back to usual solve return [] prev_entry = r return result
def roots_quintic(f): """ Calulate exact roots of a solvable quintic """ result = [] coeff_5, coeff_4, p, q, r, s = f.all_coeffs() # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s if coeff_4: return result if coeff_5 != 1: l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5] if not all(coeff.is_Rational for coeff in l): return result f = Poly(f/coeff_5) quintic = PolyQuintic(f) # Eqn standardised. Algo for solving starts here if not f.is_irreducible: return result f20 = quintic.f20 # Check if f20 has linear factors over domain Z if f20.is_irreducible: return result # Now, we know that f is solvable for _factor in f20.factor_list()[1]: if _factor[0].is_linear: theta = _factor[0].root(0) break d = discriminant(f) delta = sqrt(d) # zeta = a fifth root of unity zeta1, zeta2, zeta3, zeta4 = quintic.zeta T = quintic.T(theta, d) tol = S(1e-10) alpha = T[1] + T[2]*delta alpha_bar = T[1] - T[2]*delta beta = T[3] + T[4]*delta beta_bar = T[3] - T[4]*delta disc = alpha**2 - 4*beta disc_bar = alpha_bar**2 - 4*beta_bar l0 = quintic.l0(theta) l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) order = quintic.order(theta, d) test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) ) # Comparing floats # Problems importing on top from sympy.utilities.randtest import comp if not comp(test, 0, tol): l2, l3 = l3, l2 # Now we have correct order of l's R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4 R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4 R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4 R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4 Res = [None, [None]*5, [None]*5, [None]*5, [None]*5] Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5] sol = Symbol('sol') # Simplifying improves performace a lot for exact expressions R1 = _quintic_simplify(R1) R2 = _quintic_simplify(R2) R3 = _quintic_simplify(R3) R4 = _quintic_simplify(R4) # Solve imported here. Causing problems if imported as 'solve' # and hence the changed name from sympy.solvers.solvers import solve as _solve a, b = symbols('a b', cls=Dummy) _sol = _solve( sol**5 - a - I*b, sol) for i in range(5): _sol[i] = factor(_sol[i]) R1 = R1.as_real_imag() R2 = R2.as_real_imag() R3 = R3.as_real_imag() R4 = R4.as_real_imag() for i, root in enumerate(_sol): Res[1][i] = _quintic_simplify(root.subs({ a: R1[0], b: R1[1] })) Res[2][i] = _quintic_simplify(root.subs({ a: R2[0], b: R2[1] })) Res[3][i] = _quintic_simplify(root.subs({ a: R3[0], b: R3[1] })) Res[4][i] = _quintic_simplify(root.subs({ a: R4[0], b: R4[1] })) for i in range(1, 5): for j in range(5): Res_n[i][j] = Res[i][j].n() Res[i][j] = _quintic_simplify(Res[i][j]) r1 = Res[1][0] r1_n = Res_n[1][0] for i in range(5): if comp(im(r1_n*Res_n[4][i]), 0, tol): r4 = Res[4][i] break u, v = quintic.uv(theta, d) sqrt5 = math.sqrt(5) # Now we have various Res values. Each will be a list of five # values. We have to pick one r value from those five for each Res u, v = quintic.uv(theta, d) testplus = (u + v*delta*sqrt(5)).n() testminus = (u - v*delta*sqrt(5)).n() # Evaluated numbers suffixed with _n # We will use evaluated numbers for calculation. Much faster. r4_n = r4.n() r2 = r3 = None for i in range(5): r2temp_n = Res_n[2][i] for j in range(5): # Again storing away the exact number and using # evaluated numbers in computations r3temp_n = Res_n[3][j] if( comp( r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus, 0, tol) and comp( r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus, 0, tol ) ): r2 = Res[2][i] r3 = Res[3][j] break if r2: break # Now, we have r's so we can get roots x1 = (r1 + r2 + r3 + r4)/5 x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5 x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5 x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5 x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5 result = [x1, x2, x3, x4, x5] # Now check if solutions are distinct result_n = [] for root in result: result_n.append(root.n(5)) result_n = sorted(result_n) prev_entry = None for r in result_n: if r == prev_entry: # Roots are identical. Abort. Return [] # and fall back to usual solve return [] prev_entry = r return result
def N_equals(a, b): """Check whether two complex numbers are numerically close""" return comp(a.n(), b.n(), 1.e-6)